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Abstract 

A fundamental task of radar, beyond merely detecting a target, is to estimate some parameters 
associated with it.  For example, this might include range, direction, velocity, etc.  In any case, 
multiple measurements, often noisy, need to be processed to yield a ‘best estimate’ of the 
parameter.  A common mathematical method for doing so is called “Regression” analysis.  The 
goal is to minimize the expected squared error in the estimate.  Even when alternate algorithms 
are considered, the least squared-error regression analysis is the benchmark against which 
alternatives are compared. 
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1 Introduction and Background 

Radar signal processing is replete with parameter estimation tasks.  Parameters such as 
frequency, delay, Direction of Arrival (DOA), location, etc., are commonly estimated often from 
noisy measurements.  So, not only do we desire a good estimate of the parameter(s), but then we 
often wish to know just how good that estimate is, i.e., an evaluation on its accuracy and 
precision. 

A common measure for “goodness” is the expected squared-error, or variance, of the result.  The 
variance in the error is a particularly attractive metric as it relates to the energy or power in the 
error component of a signal.  This is intuitively satisfying to us.  However, other measures are 
also sometimes used, an example being average absolute deviation, or sometimes higher-order 
statistics.  Nevertheless, in this report we will assume the basic error statistic is the variance, or 
more generally the covariance when multiple outputs are simultaneously calculated.  Algorithms 
that try to minimize the variance are often called “least-squares” algorithms.  A closely related 
metric is Dilution of Precision (DOP). 

In radar parameter estimation problems, we often wish to fit noisy data to some signal model, in 
such a manner to minimize any variance of the resulting fit.  This overall task is called 
“regression.”  When we wish to fit to a linear sum of functions, then this is termed “linear 
regression.”  Some problems are in terms of a single independent variable, and some problems 
are in terms of more than one independent variable.  

We have arranged the contents of this report as follows. 

Section 2 reviews basic linear algebra concepts, including covariance calculations. 

Section 3 discusses DOP measurements and their relationship to covariance measures. 

Section 4 reviews linear regression analysis and calculations. 

Section 5 presents a number of example radar applications. 

One might reasonably ask “So, what exactly is ‘new’ in this report?”  We answer by suggesting 
that we are collecting concepts and results from a number of sources into a single document, 
albeit with enhanced explanations, to serve as a common backdrop for several subsequent reports 
being written.  We thereby expect to forego somewhat extensive appendices in several future 
reports, and especially duplicating those appendices in multiple reports, by referencing this 
report in their stead. 
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“Begin at the beginning,” the King said, very gravely,  
“and go on till you come to the end: then stop.” 

-- Lewis Carroll, from Alice in Wonderland 
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2 Linear Algebra and Least Squares 

We present here some basic linear algebra concepts.  Ample texts and publications exist that 
cover these concepts in detail.1,2,3,4 

Consider the vector dot product of column vectors a and x, which we write as 

b a x , (1) 

where b is the scalar result of the dot product.  We may then write the system of multiple such 
equations for a common x vector in matrix form as 

Ax b , (2) 

where we denote different a vectors and b values with a subscript as 

x = common M×1 column vector, 

1

2

T

T

T
N

 
 
 

  
 
 
 

a

a
A

a


 = N×M matrix, and 

1

2

N

b

b

b

 
 
 
 
 
 

b


 = N×1 column vector. (3) 

Matrix A and vector b are known.  We wish to solve for unknown vector x. 

If A is square and full rank, we can solve 

1x A b . (4) 

If the system is over-constrained, but still has full rank, we can solve 

  1T T
x A A A b . (5) 

This solution and its properties are discussed in Appendix A and Appendix B. 

We note that Eq. (5) reduces to Eq. (4) for a square matrix A.  The entity   1T T
A A A  is 

sometimes called the pseudo-inverse of A, or the Moore–Penrose pseudoinverse matrix of A. 
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Some additional useful matrix identities include for generic matrices G and H, 

 T T TGH H G , 

  1 1 1  GH H G , if individual inverses exist, 

   1 1 TT  G G .  (6) 

2.1 Weighted Least Squares 

A weighted least squares solution to Eq. (2) may be found by solving 

V A x V b , (7) 

where the weight matrix V is a diagonal weight matrix.  We may now solve the equation 

   T TVA V A x VA V b , (8) 

noting that   TVA V A is square, and invertible if full rank.  The solution to Eq. (7) then 

becomes 

  1
T T T T


       x A V V A A V V b . (9) 

If we cast 

T   W V V , (10) 

then Eq. (9) can be written as 

  1T T
x A W A A W b . (11) 

This is then the weighted least squares solution to Eq. (2).  We observe that because V is 
diagonal, then so is W, and W is the same as its transpose, that is 

T W W . (12) 

In addition, we note that  TA W A is square, and invertible if full rank. 

Weighting is used to essentially favor more accurate observations at the expense of less accurate 
observations.  Weights are often proportional to the inverse of the variance of respective 
observations, but this is not required.  Weighting in this manner is related to “whitening” in 
signal processing.5 
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2.2 Covariance Analysis 

Covariance provides us a measure of the uncertainty of the result, and how uncertainties are 
expected to behave relative to other uncertainties. 

Using Eq. (9), consider calculating the covariance matrix of x in terms of the covariance matrix 
of b.  Let 

           
1 1 T

T T T TTE E
        

   
xΣ xx VA VA VA Vb VA VA VA Vb . (13) 

This can be expanded and simplified to 

   1 1
T T T T T T T

 
               x bΣ A V V A A V V Σ V V A A V V A , (14) 

where the covariance matrix of b is 

 TEbΣ bb . (15) 

If we assume that bΣ  is also diagonal, meaning its elements are uncorrelated with each other, 

and we set the weighting such that 

1T     bV V Σ , (16) 

then Eq. (14) reduces to 

   1 11T T T
    x bΣ A V V A A Σ A . (17) 

In this case the weights in V are the reciprocals of the standard deviation.  However, what gets 

applied in the calculation of Eq. (9) is the product T 
 V V .  This product contains the reciprocals 

of the variances. 

Recalling and employing Eq. (10), we also recall that Eq. (9) may be written as Eq. (11), which 
we repeat here as 

  1T T
x A WA A Wb . (18) 

Furthermore, if we still assume that bΣ  is also diagonal, then Eq. (16) becomes 
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1 bW Σ , (19) 

and Eq. (17) can be written as 

   1 11T T  x bΣ A WA A Σ A . (20) 

In this case the weights in W are the reciprocals of the variances.  So, what gets applied in the 
calculation of Eq. (18)  are the reciprocals of the variances.  This is not uncommon. 

 

2.3 Comments 

Several comments in no particular order. 

 We stipulate that the derivation of Eq. (18) and Eq. (20) could have been directly in terms 
of W. 

 Regardless of whether we develop the solution in terms of matrix W or matrix V, we still 
get the same answers. 

 Note:  The Strang1 text derives the Weighted Least Squares derivation above where his 
W is our V.  Then he defines an H matrix that is our W matrix.  In the end, the result is 
the same. 
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3 Dilution of Precision 

The concept of Dilution of Precision (DOP) is essentially a figure of merit that is an error 
sensitivity estimation or calculation.  It is common for analysis of precision for the Global 
Positioning System (GPS),6 but useful in a number of other applications, too. 

We continue with the definitions of the last section.  We recall the conventional linear system of 
equations given in matrix form as 

Ax b . (21) 

Recall that if A is full rank, we can solve for a weighted least-squares solution as 

  1T T
x A WA A Wb , (22) 

where W is a diagonal weighting matrix.  This is the result previously given in Eq. (11).  In the 
uniform weighting case, W I .  This formulation works, even if A is square.  For convenience 
we will rewrite Eq. (22) as 

x C b , (23) 

where generally 

  1T T 
  
 

C A W A A W . (24) 

Now, an error in vector b will yield an error in the solution to vector x.  That is 

   x b  x ε C b ε ,  (25) 

where the individual error vectors are defined as 

bε  = column vector of errors in b, and 

xε = column vector of errors in x, (26) 

which of course means that the errors are related as 

x bε Cε . (27) 

Covariances can be calculated as 

   T T T
x x b bE Eε ε C ε ε C , (28) 

where the expected value function is defined as 
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 E z  = expected value of z. (29) 

We may write Eq. (28) somewhat more succinctly as 

T
x bΣ C Σ C , (30) 

where 

 T
x x xEΣ ε ε  = covariance matrix for xε , and 

 T
b b bEΣ ε ε  = covariance matrix for bε . (31) 

Now for some special cases. 

 

Case 1.   

In this case, we stipulate equal independent variances in the b vector, so that 

2
b refΣ I , (32) 

where 

2
ref  = variance of the individual entries in b, common to all elements. (33) 

In this case, and assuming an unweighted solution where W I ,  

    12 2T T
x ref ref 


 Σ C C A A . (34) 

Normalizing to 2  yields 

  1

2
Tx

ref




Σ
A A . (35) 

The diagonal elements of 2
x refΣ  are ratios of variances.  The square-root of these 

ratios are relative standard deviations.  So, the square-root of the diagonal elements of 
2

x refΣ  represent a scaling of standard deviations, that is, a scaling of precision due to 

errors in b.  These are the DOP values. 
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Case 2. 

In this case, we stipulate independent unequal variances in the b vector, so that 

2
b refΣ K , (36) 

where 

2
ref  = reference variance of the individual entries in b, and 

K = diagonal matrix of weights meant to scale 2
ref . (37) 

Since 2
ref  is a somewhat arbitrary reference value, elements of K may generally be 

more or less than one.  In this case, the covariance matrix for xε  becomes 

 2 T
x refΣ C KC . (38) 

Normalizing to 2
ref  yields 

2
Tx

ref


Σ
C KC . (39) 

When the variances in bΣ  are not equal,† then it is common to use a weighted least 

squares solution where the weights are the reciprocal of the variance of the observations.  
This essentially favors more accurate observations at the expense of less accurate 
observations, providing overall minimum variances in the output covariance matrix xΣ .  

This means 

1W K , (40) 

in which case Eq. (39) reduces to 

   1 11
2

T Tx

ref

  
Σ

A W A A K A . (41) 

 

† A diagonal bΣ  with unequal elements is termed heteroscedasticity. 
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The diagonal elements of 2
x refΣ  are still ratios of variances.  So, the square-root of the 

diagonal elements of 2
x refΣ  are still the DOP values, with the constraint that they are 

relative to a reference error in b. 

Some DOP values, or combinations of DOP values, have been given specific nomenclature. 

If elements of vector x represent position, with x and y coordinates representing horizontal 
positions, and z representing a vertical position coordinate, and the diagonal elements of xΣ  are 

  2 2 2diag
T

x x y z     Σ , (42) 

then  

HDOP = Horizontal DOP =  2 2 2
x y ref   , 

VDOP = Vertical DOP = 2 2
z ref  , 

PDOP = Position DOP =  2 2 2 2
x y z ref      (43) 

Other DOP values are also employed.  For example, GPS figure of merits also include Time 
DOP (TDOP) and Geometric DOP (GDOP).  
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4 Linear Regression Analysis 

Regression analysis is about estimating the relationship between variables.  Generally, a model 
function is assumed for the relationship, and what are estimated are coefficients or other model 
parameters.  This is a parameter estimation problem.  Linear regression assumes that some 
outcome is the weighted linear sum of functions of some independent variables.  The functions 
themselves need not be linear functions of the independent variables, but the weighted sum does 
need to be a linear sum.  

Entire books have been written about regression, with a text by Draper and Smith being one such 
example.7  Additional texts that include discussions on regression include those by Johnson and 
Leone,8 and Kendall and Stuart.9 

4.1 Simple Linear Regression – Fitting to a Line 

“Simple linear regression” assumes one independent variable.  Here now we assume a very 
simple case, that of a relationship that can be expressed as a line, namely 

0y y m x  , (44) 

where 

x = independent variable,  
y = dependent variable, 
m = slope of the line, and 

0y = ‘y’ intercept. (45) 

The slope and intercept define the line that relates y to x.   

In a typical experiment, if we believe a linear model for the relationship, then we might choose a 
set of x values and measure corresponding y values, and from these ordered pairs attempt to 
estimate slope and intercept, noting that our y values will generally exhibit measurement errors, 
or noise.  We will identify specific x and corresponding y values with subscripts, namely 

ix  = specific independent variable, and  

iy  = specific corresponding measured dependent variable, (46) 

both for 1, 2,3, ,i N  . 

With this set of ordered pairs, we wish to estimate a “best fit” line to the data, and derive the 
optimum m and 0y  values.  Accordingly, we may set up the system of linear equations in matrix 

form as 
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1 1

2 20

1

1

1 N N

x y

x yy

m

x y

   
            
   
   

  
. (47) 

The system of equations is clearly over-constrained, but we want this because of measurement 
errors in the y variable.  However, we also recognize Eq. (47) to be of the form 

Ax b . (48) 

where in this case the matrix and vector quantities are 

1

2

1

1

1 N

x

x

x

 
 
 
 
 
 

A
 

,  

1

2

N

y

y

y

 
 
 
 
 
 

b


, and 

0y

m

 
  
 

x . (49) 

It is not unreasonable to expect that the uncertainty in iy  is statistically equal for all measured 

values.  Consequently, using the results of the previous section, we may calculate the uniformly-
weighted (a.k.a. unweighted) least-squares fit of a line to the data as 

  10 T Ty

m

 
 

 
A A A b . (50) 

We note that 

1

2

1 1

N

i
iT

N N

i i
i i

N x

x x



 

 
 
   
 
  



 
A A . (51) 

The inverse of Eq. (51) can be calculated to be 
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 
2

1 1 1
2

2

11 1

1

N N

i i
i iT

NN N
ii i

ii i

x x

x NN x x

  

 

 
 

                  

 

 
A A . (52) 

This allows us to expand Eq. (50) to 

2

1 1 1 10
2

2

1 1 11 1

1

N N N N

i i i i i
i i i i

N N NN N
i i i ii i

i i ii i

x y x x y
y

m
x y N x yN x x

   

   

  
                                  

   

   

. (53) 

Specifically, we identify the components to be 

2

1 1 1 1
0 2

2

1 1

N N N N

i i i i i
i i i i

N N

i i
i i

x y x x y

y

N x x

   

 

 
  

 
         

   

 
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 

. (54) 

Given that the errors in the various iy  measurements are independent, but identically distributed 

with zero mean, we may define the covariance matrix 

  2T
yE  bΣ bb I . (55) 

The covariance matrix for the estimates of line parameters then is calculated as 

   0 0

0

2
1 1, 1 2

2
,

y y m T T
y

y m m

 


 

 
 
   
 
 

x bΣ A Σ A A A . (56) 

This result indicates the “goodness” of the line fit to the data. 



- 22 - 

Using Eq. (52).  , we may now expand the calculation of the covariance of the estimates to 
become 

0 0

0

2
2 2

, 1 1
22

, 2

11 1

N N

i i
y y m y i i

NN Ny m m
ii i

ii i

x x

x NN x x
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                           

 

 
xΣ . (57) 

From these, individual variances can be extracted.  For example, the variance in the estimate of 
the slope becomes 

2 2
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         
 

, (58) 

and the variance in the estimate of the intercept becomes 
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N x x
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 

.  (59) 

Note that these variances decrease as the number of independent samples N increases, and as the 
spread in ix  increases.  This provides important intuition in setting up these types of problems. 

This analysis is easily extended to employing a weighted least squares solution. 
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4.2 Simple Linear Regression – Fitting to a Polynomial 

Linear regression analysis does not need to presume a linear relationship to the independent 
variable.  Indeed, it is frequently used for fitting polynomials to data.  This is sometimes called 
“Polynomial Regression.” 

Consider the model of a polynomial of order J, namely 

2 3
0 1 2 3

J
Jy x x x x         , (60) 

where 

x = the independent variable,  
y = dependent variable, and 

j  = the jth coefficient of the polynomial. (61) 

We wish to estimate the best fit coefficients for a specific set of defined x and corresponding y 
values, which we again identify with subscripts as 

ix  = specific independent variable, and  

iy  = specific corresponding measured dependent variable, (62) 

both of these for 1,2,3, ,i N  . 

This fits into our least-squares structure 

Ax b , (63) 

where in this case the matrix and vector quantities are 

2
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, and 
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x



. (64) 

We will again assume that the uncertainty in iy  is statistically equal for all measured values.  

However, we might have other reasons for wanting a “better” match for some ix  than others.  

Consequently, using the results of the previous section for a weighted least squares solution, we 
may calculate the weighted least-squares fit of a set of polynomial coefficients to the data as 

 
0

1 1

2
T T

J









 
 
 
  
 
 
  

A WA A Wb



. (65) 

Given that the errors in the various iy  measurements are independent, but identically distributed 

with zero mean, we may again define the covariance matrix 

  2T
yE  bΣ bb I . (66) 

The covariance matrix for the estimates of the coefficients in Eq. (65) is calculated as 

   1 12 T T T T
y

 
xΣ A WA A W WA A WA . (67) 

If uniform weighting, where W I , then this reduces to 

  12 T
y


xΣ A A . (68) 

We offer some summary comments. 

 We can reasonably well fit a polynomial approximation to data using a weighted least-
squares regression.  

 For a polynomial of order N, we need at least N+1 independent samples of the function 
and its inputs.  However, more is better to help accommodate outliers and noise in the 
data. 

 Weights can be employed to force the polynomial to be more accurate for certain samples 
at the expense of other samples. 
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4.3 Simple Linear Regression – Fitting to a Sum of Functions 

Simple linear regression merely requires the linear sum of functions of a single independent 
variable.  So, we may presume a general model for the data as 

         0 0 1 1 2 2 3 3 J Jy f x f x f x f x f x         , (69) 

where 

x = the independent variable,  
y = dependent variable, 

 jf x  = the jth function of x, and 

j  = the coefficient of the jth function in the linear sum. (70) 

Our task is to estimate the best fit coefficients for a specific set of defined x and corresponding y 
values, which we again identify with subscripts as 

ix  = specific independent variable, and  

iy  = specific corresponding measured dependent variable, (71) 

both of these for 1, 2,3, ,i N  . 

This fits into our least-squares structure 

Ax b , (72) 

where in this case the matrix and vector quantities are 
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The weighted least squares solution can be calculated as 
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. (74) 

Given that the errors in the various iy  measurements are independent, but identically distributed 

with zero mean, we may again define the covariance matrix 

  2T
yE  bΣ bb I . (75) 

The covariance matrix for the estimates of the coefficients in Eq. (74) is calculated as 

   1 12 T T T T
y

 
xΣ A WA A W WA A WA . (76) 

If uniform weighting, where W I , then this reduces to 

  12 T
y


xΣ A A . (77) 
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4.4 Multi-Linear Regression – Fitting to a Hyperplane 

Multi-linear regression assumes more than one independent variable.  A simple case is a 
relationship that can be expressed as one of a hyperplane, namely 

0 1 1 2 2 2 3y y m x m x m x     , (78) 

where 

jx  = the jth independent variable, for 1 j J  ,  

y = dependent variable, 

jm  = slope associated with jx , and 

0y = ‘y’ intercept. (79) 

In two dimensions, a hyperplane equates to a one-dimensional line.  In three dimensions, a 
hyperplane equates to a two-dimensional flat plane. 

In a typical experiment, we will choose a set of jx  and measure a corresponding y value, and 

repeat this N times.  We will again define specific jx  and corresponding y values with 

subscripts, namely 

,j ix  = the ith value for the jth independent variable, and  

iy  = specific corresponding ith measured dependent variable, (80) 

all for 1, 2,3, ,i N  . 

This fits into our least-squares structure 

Ax b , (81) 

where in this case the matrix and vector quantities are 
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x
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. (82) 

We will again assume that the uncertainty in iy  is statistically equal for all measured values.  

Consequently, using the results of the previous section, we may calculate the uniformly-weighted 
(a.k.a. unweighted) least-squares fit of a hyperplane to the data as 
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1 1
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

. (83) 

Given that the errors in the various iy  measurements are independent, but identically distributed 

with zero mean, we may again define the covariance matrix 

  2T
yE  bΣ bb I . (84) 

The covariance matrix for the estimates of hyperplane parameters in Eq. (83) is again calculated 
as 

   1 11 2T T
y

  x bΣ A Σ A A A . (85) 

This result indicates the “goodness” of the hyperplane fit to the data. 
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4.5 Multi-Linear Regression – Fitting to a Sum of Functions 

Multi-linear regression merely requires the linear sum of functions of perhaps multiple 
independent variables.  So, we may presume a general model for the data as 

       0 0 1 1 1 1 2 2 1 1, , , , , , , ,K K K J J Ky f x x f x x f x x f x x            , (86) 

where 

kx  = the independent variables, for 1 k K  ,  

y = dependent variable, 

 1, ,j Kf x x  = the jth function of 1, , Kx x , for 0 j J  , and 

j  = the coefficient of the jth function in the linear sum. (87) 

In a typical experiment, we will choose a set of kx  and measure a corresponding y value, and 

repeat this N times.  We will again define specific kx  and corresponding y values with 

subscripts, namely 

,k ix  = the ith value for the kth independent variable, and  

iy  = specific corresponding ith measured dependent variable, (88) 

all for 1,2,3, ,i N  . 

This fits into our least-squares structure 

Ax b , (89) 

where in this case the matrix and vector quantities are 
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. (90) 

The weighted least squares solution can be calculated as 
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. (91) 

Given that the errors in the various iy  measurements are independent, but identically distributed 

with zero mean, we may again define the covariance matrix 

  2T
yE  bΣ bb I . (92) 

The covariance matrix for the estimates of the coefficients in Eq. (74) is calculated as 

   1 12 T T T T
y

 
xΣ A WA A W WA A WA . (93) 

If uniform weighting, where W I , then this reduces to 

  12 T
y


xΣ A A . (94) 
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4.6 Comments 

Several comments in no particular order. 

 The models of Eq. (44), Eq. (60), Eq. (69), and Eq. (78), are all merely special cases of 
Eq. (86). 

 Choosing the underlying functions  1, ,j Kf x x  for which coefficients are calculated 

generally requires some insight or intelligent guess as to a reasonably good model for the 
underlying behavior. 

How Many Samples? 

So, given that we need to find J coefficients, how many N independent measurements should we 
collect?  We readily identify some basic truths. 

1. We minimally need N J independent samples. 

2. More N is better, all else equal.  (Note the qualifier.) 

After this, it gets a little more complicated, because other things matter, too. 

Ultimately, we want enough of the right kind of data to achieve an acceptable covariance matrix 

xΣ  for our coefficient estimation.  We emphasize that it is not merely selecting the right number 

N, but also the nature of the data set.   

For example, in the relatively simple example of determining the slope of a line fitted to some 
data, recall that the overall covariance of the linear regression result was given by Eq. (56), and 
specifically the variance of the slope was given by Eq. (58).  Now consider two cases 

Case 1.   Consider the case where 2 1y   and N=100, but samples of ix  are uniformly 

distributed over the interval [0,1].  The variance of the estimate of the slope is 
approximately 0.1176. 

Case 2.  Now consider the case where 2 1y   and N=2, which is the minimum number of 

samples needed, but samples of ix  are at the endpoints of the wider interval [0,100].  The 

variance of the estimate of the slope is now approximately 0.0002.  This indicates a more 
accurate result than Case 1, in spite of the substantially fewer number of samples. 

The point of this exercise is to illustrate that sometimes ‘better’ data is more useful than ‘more’ 
data.  The ultimate measure of goodness is the variance of the parameter we wish to estimate.   

Without elaboration, we further state that when multiple parameters are being estimated, by 
selecting the right data set, we can often trade the goodness of one parameter’s estimate for the 
goodness of another parameter’s estimate. 
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“The purpose of computing is insight, not numbers.” 
-- Richard Hamming 
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5 Radar Applications 

Frequently in radar applications, given a signal in Additive White Gaussian Noise (AWGN), the 
question arises “how well can we estimate phase, frequency, time-delay, or some other 
parameter?”  Texts that address this question include one by McDonough and Whalen.10 

We now address several related problems.  However, now that we move into radar applications, 
we are compelled to reuse some variable names from earlier in this report to represent some of 
the new parameters with which we will deal.  We apologize for any confusion, and hope that 
context will help the reader to sort them out. 

Nevertheless, the following examples are somewhat simple ones, mainly meant to illustrate the 
breadth and utility of regression analysis in radar parameter estimation. 

5.1 Phase Variance 

Consider a sinusoidal signal in AWGN.  The signal space diagram is in Figure 1. 

We define some signals as follows. 

js Ae   = “truth” signal, and 
  = complex zero-mean AWGN. (95) 

 

Figure 1.  Signal space diagram for signal in noise. 

We stipulate that η has uncorrelated In-Phase (I) and Quadrature (Q) components, with 

2
  = variance of orthogonal components of  . (96) 

Our measured signal is identified as follows 
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mj j
m ms A e Ae      = “measured” signal with noise, (97) 

where 

m mA s  = magnitude of measured signal with noise, 

 argm ms   = phase of measured signal with noise. (98) 

The idea is to estimate the true signal’s θ based on measurements of ms .  We will assume that 

mA A  is a reasonable assumption.  This is effectively assuming reasonably good Signal-to-

Noise Ratio (SNR). 

We identify the SNR of a single measurement ms  as 

2

1 22

A
SNR


  . (99) 

Due to circular symmetry, for good SNR, the variance of the phase measurement of ms  is 

 
2
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2m mE
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



       . (100) 

This is the expected squared error of the phase measurement with respect to the true signal 
phase. 

Multiple Signal Measurements 

Let us make N measurements of signal+noise, each with an independent noise sample, and create 
the weighted linear sum 

 
1

N
j

i i
i

z a Ae  


   . (101) 

The new SNR of the linear sum of signals is calculated as 
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 . (102) 
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Thus, SNR has been improved by 

2
2

1 1

N N

i i
i i

a a
 

 
  
 
  .  For uniform weighting, this equates to an 

improvement by a factor N. 

Recall from Eq. (100) that a phase measurement from a single signal+noise measurement 

exhibits a variance of   12
12

m
SNR

 .  The phase of the linear weighted sum of multiple 

signal+noise measurements then has variance 
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 . (103) 

For uniform weighting, this becomes 

 
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2 2SNR N SNR 


   . (104) 

Multiple Phase Measurements 

A weighted linear sum of phase measurements themselves can be described as 

,
1

N

i m i
i

a 


  , (105) 

where 

,m i   = the phase measurement of the ith measurement. (106) 

We will assume no ambiguities in phase, that is, all phases are unwrapped and phase aliasing has 
been mitigated.  Since the phase measurement errors are presumed to be independent, but 
identically distributed, 
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
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

  . (107) 

Note that for a phase difference, where 1 1a   and 2 1a   , we calculate   12
1SNR 

 . 

If we set 1ia N , for a uniformly weighted average, then 
 

2

1

1

2N SNR 
 , which is identical 

to Eq. (104). 
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5.2 Frequency Estimation 

Frequency is defined as the time-derivative of phase.  Here we examine the accuracy of a 
frequency estimation based on phase measurements. 

5.2.1 Two Phase Measurements 

For a constant-frequency sinusoid, we are given that 

2 1

0T

d

dt T

 



  , (108) 

where 

1  = phase at the beginning of the observation interval, 

2  = phase at the end of the observation interval, 

T = observation time interval. (109) 

Of course, if the frequency is indeed constant, then any non-zero T will do as well, aliasing 
issues notwithstanding.  This is the unwrapped phase assumption mentioned earlier. 

Accordingly, we identify the “measured” frequency based on two phase measurements as 

,2 ,1m m
m T

 



  = “measured” radian frequency, (110) 

Consequently, we may calculate the variance of the frequency measurement as 

2 2
2 2

1

1 1
2

m mT T SNR
    . (111) 

We might further note that nominal frequency resolution may be defined as 

2
m T

  . (112) 

The variance of the frequency measurement can then be equated to 

 

2
2

2
12

m

m
SNR








 . (113) 

Nevertheless, SNR here is for a single phase measurement, and this equation is for a single phase 
difference.  Did we mention that aliasing issues are notwithstanding? 
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Comments 

Eq. (111) will often be written in textbooks as the equation 

2
2

0

1

2m
rT E N

  , (114) 

where  

rE  = Energy in the received signal, and 

0 2N  = two-sided power spectral density of the white noise. (115) 

An example is the text by McDonough & Whalen.10 

We note that a signal of duration τ will have a two-sided nominal bandwidth 

1  , (116) 

Consequently, SNR is equated to 

 0 2
rE

SNR
N




 , (117) 

where the numerator is the signal power in a single measurement, and the denominator is the 
noise power in that measurement.  This may be simplified to 

  0
0

2
2

r
r

E
SNR E N

N
  , (118) 

allowing the variance of the frequency measurement to be 

2
2

1

1
m T SNR

  . (119) 

This, of course, is identical to Eq. (111). 

5.2.2 Multiple Phase Measurements 

While the preceding development is for two phase measurements, we now examine the case of N 
equally spaced phase measurements.  This will require a linear regression analysis. 

We will use N phase measurements, where we equate the phase measurement to the model as  

, 0m i m it    , for 1 i N  . (120) 



- 38 - 

Eq. (120) is just the equation of a line, as was explored in section 4.1, making linear regression 
appropriate.  For equally spaced measurements in time, we set 

i tt i  , (121) 

where 

t  = sample spacing in time. (122) 

Note that the set of time delays is ti  for 1 i N  .  We calculate the overall interval to be 

 1 tT N   . (123) 

Accordingly, we identify the matrix and vector quantities as 

1

1 2

1

t

t

tN

 
  
 
  

A
 

,  

,1

,2

,

m

m

m N






 
 
 
 
 
  

b


, and 

0

m



 

  
 

x . (124) 

For uniform weighting, the best fit parameters are calculated as 

  10 T T

m




 
 

 
A A A b . (125) 

Recall from Eq. (100) that the variance in the phase measurements is 

2

1

1

2m SNR   . (126) 

From section 4.1, the variance in the frequency measurement is then 
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   

2 2
2

2

1 1

m m
N N

t t
i i

N

N i i

  

 


          
 

. (127) 

The series in the denominator may be evaluated so that Eq. (127) can be expanded and simplified 
to 

 
2 2

2 2

12

1m m
t N N

  
 

. (128) 

This is essentially the same result reported by Rife and Boorstyn.11 

Incorporating Eq. (123) into Eq. (128) yields 

 
 

2 2
2

12 1

1m m

N

T N N
  





. (129) 

Expanding with Eq. (126) yields 

 
 

2
2

1

6 1 1

1m

N

SNRT N N


  
  

  
. (130) 

For 2N  , this calculates to Eq. (111), which is comforting.  However, as N increases, this 
variance does in fact decrease.  Note that for large N, this approaches 

2
2

1

6 1
m SNRT N


 

  
 

. (131) 

So, the longer the observation time interval, the lesser is the variance in our frequency 
measurement.  The same is true for higher SNR per sample, or more independent measurement 
samples. 

We stipulate that these results are for equally spaced sample times of the phase.  If sample times 
are spaced unequally, then we would need to back up to a more general linear regression 
calculation. 
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5.2.3 Relationship to Fourier Analysis 

The customary way to determine frequency is to employ a Fourier analysis of the data, typically 
calculating a Fourier Transform of the data, for sampled data being a Discrete-Time Fourier 
Transform (DFT).  Here we now examine the relationship of the previous analysis to the results 
of a DFT. 

Recall that samples of the noise-free truth signal are described by the constant modulus function 

ij
is Ae   = “truth” signal, (132) 

where we now allow i  to explicitly vary with sample number, for samples 1 i N  .   

Recall that our measured signals were defined as 

,
, ,

m ij
m i m i i is A e s

     = “measured” signal containing noise, (133) 

where 

i  = complex noise values at sample times. (134) 

A matched filter will attempt to select the correct reference signal function to maximize the 
magnitude of the response 

*
, ,

1

N

r m i r i
i

S s s


 , (135) 

where the “*” denotes complex conjugate, and 

,
,

r ij
r is e

  = the reference signal that we wish to match. (136) 

Consequently, we may expand Eq. (135) to 

,
,

1

r i
N

j
r m i

i

S s e



 . (137) 

If we define the reference phase function as a time-varying phase, such that 

,r i r it    = reference phase for ith sample,  (138) 

where 
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r  = constant reference frequency, and 

it  = sample times, (139) 

then Eq. (137) becomes 

,
1

r i
N

j t
r m i

i

S s e 


 . (140) 

This is, in fact, the DFT of the measured input signal with sample values ,m is , albeit it is usually 

written with constant increments in time, with i tt i  , and evaluated with r  chosen at 

constant increments in frequency. 

We now stipulate that the true signal is a constant-modulus constant-frequency complex 
sinusoid, with phase function as a time-varying phase, such that 

0 0i it      = true signal phase for ith sample,  (141) 

where 

0   = true signal reference phase, and  

0  = true signal constant frequency. (142) 

In addition, we model the phase of the measured signal in Eq. (133) as 

, ,m i m m i it         = phase of measured signal for ith sample,  (143) 

where 

m   = best-fit reference phase to the phase measurements, 

m  = best-fit linear phase increment (frequency) to the phase measurements, and 

,i  = residual error in the measured phase for each sample. (144) 

The nature of ,i  is that it is devoid of constant and linear terms with respect to it , and thus 

contains only higher-order terms which we will assume to be small, in fact negligible. 

We now define the deviation of the measured phase from the true phase as 

   , 0 0m i i m m i it t                ,  (145) 

where 

  = error in best-fit reference phase, and 

  = error in best-fit frequency. (146) 
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These errors by construct have zero mean, otherwise they wouldn’t be “best-fit,” i.e., an 
unbiased estimator. 

For good SNR, we will again assume ,m iA A .  Combining all these results and assumptions 

allows us to write Eq. (140) as 

        0 0 0 0

1 1

i r ir i
N N

j t j j tj t
r

i i

S A e e Ae e
                

 
   . (147) 

Neglecting any aliasing, this summation is maximum when 0r    .  Note that if i tt i  , 

then this equates to 

   0 0

1

r t
N

j j i
r

i

S Ae e        


   

 
   

 

 

0

0

0
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0
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2
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2

r t
r t

N
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r t

N

ANe e

N

  
 

  

  





   





    
  
       
     

. (148) 

So, we have a peak value at 0r    .  Statistically, the expected peak is located at 0r  , 

but   will manifest as an error.  The variance of this error is its expected squared error with 

respect to its mean, which is the same as the variance in m  itself.  So 

2 2
m  


 , (149) 

where 2
m is exactly that value calculated in Eq. (128). 

So, what is the point of all this?   

In summary, whether we calculate the DFT of samples of the signal itself and locate its peak, or 
we extract the phase of the samples and fit a line to the phase samples, we get the same answer 
for the estimated frequency, with the same variance of the frequency estimate. 
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5.3 Delay Estimation 

Time is the dual of frequency, so the analysis of the preceding section can be applied here.  It is 
essentially the same development, but with parameters’ roles reversed. 

We will use N phase measurements, where we now equate the phase measurement to the model 
with the expression  

, 0m i i mt    , for 1 i N  . (150) 

The intent now is to use the measured phase as a function of frequency to estimate time delay. 

Eq. (150) is again just the equation of a line, as was explored in section 4.1.  For equally spaced 
measurements in frequency, we set 

i i   , (151) 

where 

  = sample spacing in frequency. (152) 

Note that the set of frequencies is i  for 1 i N  .  We calculate the overall frequency 

bandwidth to be 

 1N     . (153) 

Accordingly, we identify the matrix and vector quantities as 
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
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 
 
 
 
 
  

b


, and 

0

mt

 
  
 

x . (154) 

For uniform weighting, the best fit parameters are calculated as 
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  10 T T

mt

  
 

 
A A A b . (155) 

Recall from Eq. (100) that the variance in the phase measurements is 

2

1

1

2m SNR   . (156) 

From section 4.1, the variance in the time delay measurement is then 

   

2 2
2

2

1 1

m mt
N N

i i

N

N i i



 

 

 


          
 

. (157) 

The series in the denominator may be evaluated so that Eq. (157) can be expanded and simplified 
to the expression 

 
2 2

2 2

12

1m mt
t N N

 
 

. (158) 

Incorporating Eq. (153) into Eq. (158) yields 

 
 

2 2
2

12 1

1m mt
N

N N
 


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 

. (159) 

Expanding with Eq. (156) yields 

 
 

2
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1

6 1 1

1mt
N

SNRN N


  
  
   

. (160) 

As N increases, this variance does in fact decrease.  Note that for large N, this approaches 

2
2

1

6 1
mt SNRN


 

  
  

. (161) 

So, the wider the observation bandwidth, the lesser is the variance in our time delay 
measurement.  The same is true for higher SNR per sample, or more independent measurement 
samples. 

We stipulate that these results are for equally spaced sample frequencies of the phase.  If sample 
frequencies are spaced unequally, then we would need to back up to a more general linear 
regression calculation. 
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5.4 DOA Estimation 

Measuring the Direction of Arrival of a transmitted signal is often done by analyzing the phase 
of received signals across a dispersed set of receiving antenna elements.  This is a rich area of 
analysis and can quickly explode into many different specialty scenarios and situations. 

We note that the previous sections dealt with phase as a function of time or temporal frequency.  
However, we now generally deal with phase as a function of position, or distance.  Strictly 
speaking, phase as a function of distance is termed “wavenumber,” although “spatial frequency” 
is also often heard. 

In this major section, we will exemplify DOA estimation with some rather simple studies, but 
nevertheless quite relevant to even state-of-the-art radar modes.  We will leave more 
sophisticated DOA estimation for future reports. 

5.4.1 Two-Element Interferometer 

Consider the two-dimensional construct where linear Electro-Magnetic (EM) signal wavefronts 
are travelling in free space, across a region where we have two receiving antenna elements.  This 
is illustrated in Figure 2.  The DOA is the direction opposite the direction of propagation. 

 

 

Figure 2.  Two-element interferometer geometry. 
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In this geometry, we define 

,1m  = measured phase at the location 2x b  , 

,2m  = measured phase at the location 2x b , and 

b = separation of the antenna phase centers, often called the “baseline.” (162) 

For a constant-frequency sinusoidal signal, we identify from the geometry that 

,2 ,1 sinm m k b     , (163) 

where 

2
k




  = wavenumber in the direction of propagation, where 

λ  = wavelength of the propagating signal. (164) 

The DOA can then be calculated as 

 ,2 ,1
sin

m m

k b

 



  . (165) 

Using Eq. (100), we calculate the variance of the DOA as 

   
2 2

2 2
1

1 1
2

cos cos
m

k b k b SNR
  

 
  . (166) 

Note that cosb   is merely the projection of the baseline separation in the direction of the signal 
source, i.e., the DOA. 

Classic Interferometric SAR 

The two-element interferometer is routinely used in Interferometric Synthetic Aperture Radar 
(IFSAR, or InSAR) to estimate land surface topography.12 

We will examine a simple model for height measurement, illustrated in Figure 3.  For simplicity, 
we will assume that the baseline normal is pointed to a point on the reference plane, which is not 
the same as the actual land surface level. 

We now identify the following two points 

P = point at range R on the reference plane, and 
P’ = point at range R on actual land surface. (167) 

We define the spatial relationships between points P and P’ as 
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d = 3-D distance between points P and P’, and 
h = vertical height of point P’ above point P. (168) 

For small d with respect to range R,  

sin
cos

h
d R 


   (169) 

Combining this with Eq. (165) yields 

 ,2 ,1
cos

cos sin m m
R

h R
k b

        (170) 

Note that for small ϕ, we may assume cos 1  . 

The variance in the height estimate for our geometry is then 

2
2

1

cos 1
h

R

k b SNR


 

  
 

. (171) 

This is the familiar expression given in multiple sources.  Some factor-of-two improvements 
might be had by slightly altering the operating modality.13 

 

Figure 3.  Interferometric SAR geometry. 



- 48 - 

5.4.2 Multi-Element DOA 

Consider the two-dimensional construct where linear Electro-Magnetic (EM) signal wavefronts 
are travelling in free space, across a region where we now have multiple receiving antenna 
elements.  This is illustrated in Figure 4.  The DOA is still the direction opposite the direction of 
propagation. 

 

Figure 4.  Multi-element receiving array.  In general, receive element spacing need not be 
regular, but in practice often is. 

In this geometry, the phase of the signal received at the ith antenna element is modelled as 

, 0 sinm i i mx k    , for 1 i N   (172) 

where our task is to estimate the best fit direction of arrival m , or equivalently the best fit 

function sin m .  The antenna element locations are specifically their phase centers. 

This model makes linear regression appropriate.  Although Figure 4 shows irregular receive 
element spacing, for our convenience we will subsequently assume equally spaced antenna 
elements along the x axis, and set 

i xx i  , (173) 

where 
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x  = sample spacing along the x axis. (174) 

Note that the set of spatial locations is xi  for 1 i N  , that is assumed to be limited to a finite 

overall span.  We then calculate the overall span of antenna element phase centers to be 

 1 xb N   . (175) 

The separation of the ends of this array in fact define the maximum baseline available to us. 

Accordingly, we identify the matrix and vector quantities as 
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For uniform weighting, the best fit parameters are calculated as 
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Specifically, we identify 
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Note that for 2N  , where x b  , this equates to Eq. (165). 

Having identified the best fit sin m , we can calculate the specific angle 

 asin sinm m  . (179) 

Recall from Eq. (100) that the variance in the phase measurements is 
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From section 4.1, the variance in the sin m  calculation is then 
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The series in the denominator may be evaluated so that Eq. (181) can be expanded and then 
simplified to 
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Incorporating Eq. (175) into Eq. (182) yields 
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Expanding with Eq. (180) yields 
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This is essentially the same result as Eq. (130) in section 5.2.2.  If we want to calculate the 
variance of the DOA angle itself, then we observe that a small change in angle yields a small 
change in the sine of the angle as 

 sin
cosm

m
m

d

d





 . (185) 

Consequently, we identify the relationship of variances as 

2 2
sin2

1

cosm m
m

  


 , (186) 

which is then expanded to 
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



  
  

 
. (187) 

Note that for 2N   this equates to Eq. (166), a nice check. 
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Antenna Constraints 

The development above, culminating in Eq. (187), suggests that if we keep adding independent 
antenna elements, then the DOA variance keeps decreasing at an asymptotic rate of 1/N.  This is 
a little misleading.  In fact, for a finite overall length of the antenna, as we keep subdividing the 
antenna into smaller and smaller non-overlapping subapertures, then the antenna effective area 
will also diminish at a 1/N rate, which means the SNR of the received signal from an individual 
antenna element will also decrease at a 1/N rate. 

So, we define the overall aperture of the summation of all equal and nonoverlapping 
subapertures to be 

xL N    = overall aperture length. (188) 

Furthermore, the baseline span is related to the overall aperture length by 

1N
b L

N 


  . (189) 

This also suggests that the SNR of the received signal from an individual antenna element that is 
of length x L N  , will behave as 

1
1

SNR SNR
N  , (190) 

where 

SNR  = the SNR if the signals from all subapertures were coherently added. (191) 

Putting these results into Eq. (187) yields 
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   
    

    
.   (192) 

If we assume that SNR  remains constant, then observe that behavior as a function of N is 

limited to the quantity in the square brackets, and in going from 2N   to N  , decreases 
from values 4/3 to 1.  Consequently, adding more antenna phase centers within some finite 
overall aperture length at the expense of a corresponding lesser SNR for any one phase center, 
will decrease the variance of the DOA estimate somewhat, but arguably not by much. 

Otherwise, a larger overall antenna aperture, and or larger wavenumber (i.e., shorter wavelength) 
will improve the DOA measurement variance with significantly greater impact. 

We observe that this theme of subdividing a fixed aperture into ever more subapertures not 
significantly enhancing some performance aspects is not limited to DOA, with Minimum 
Detectable Velocity (MDV) in Ground Moving Target Indicator (GMTI) radar being another 
example.14 
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RMS Baseline 

Consider the concept of a Root-Mean-Square (RMS) baseline.  This is essentially twice the 
second-moment measure of antenna element positions, i.e., the span between one standard 
deviation on either side of center mean.  For convenience we will assume an even number of 
uniformly spaced antenna elements centered at zero.  The RMS baseline is then twice the 
standard deviation of the elements, or 

2

1

1
2

N

RMS i
i

b x
N 

  .   (193) 

This evaluates to 

2 1

3RMS x
N

b


  .   (194) 

Using Eq. (188), we may write this as 

2
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1
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This lets us write Eq. (192) as 
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Note that for 2N  , this equates to Eq. (166), where we recall from Eq. (190) that for this 
specific case 12SNR SNR  . 

The overall message here is that for uniformly spaced antenna elements, dividing the overall 
aperture into more subapertures will increase the RMS baseline somewhat, and give some 
improvement in DOA estimation, albeit with diminishing returns. 

Phase Ambiguities 

It is imperative that phase measurements ,m i  be unwrapped prior to DOA calculations.  Since 

DOA is essentially a beamforming or beam-steering problem, the proper parameter from which 
to calculate DOA is relative time delay of the received signals across the antenna elements.  Our 
construct is using phase shift as a surrogate for time delay, which is adequate for narrow-band 
signals.  Nevertheless, we require 

 , 0 , 0
2

m i m i
c

t t
 


   , (197) 

where 
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c = velocity of propagation,  

,m it  = the “measured” time corresponding to the phase measurement ,m i , and 

0t  = the reference time corresponding to the reference phase 0 . (198) 

Note that for our calculations, the phase difference  , 0m i   can not be modulo-2π, i.e., it 

needs to be unwrapped. 

Simple Beamforming 

As with frequency estimation that was addressed in 5.2.3, we can use Fourier analysis to estimate 
DOA.  Using complex weighted sums of signals at the antenna elements is termed 
“beamforming.”  Building on the previous analysis, we identify the uniformly spaced elemental 
signals as 

 , 0 sin
, , ,

m i m xj j k i
m i m i m is A e A e

     , (199) 

and our reference signal as 

,
j i

r is e   = the reference signal that we wish to match. (200) 

The matched filter response then becomes 
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
 . (201) 

For good SNR, we will again assume ,m iA A .  Combining all these results and assumptions 

allows us to write 
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This evaluates to 
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. (203) 

Statistically, based on the discussion on Fourier Analysis in section 5.2.3, this will have a peak 
magnitude when sinx mk     , from which we can calculate 

asinm
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k



 

 
   

. (204) 
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The variance in this peak location is given by Eq. (192).  The trick is in identifying the exact 
location of the peak, which is outside the scope of this report.  We do note that identifying 
something even close to this peak DOA can aid the aforementioned phase unwrapping need. 

We also note that the width of the mainlobe, nominally its resolution, is nominally defined when  

 sin

2
m xk N




 . (205) 

This yields the resolution of sin m  to be 
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. (206) 

Interferometric SAR Reexamined 

We now revisit the Interferometric SAR discussion in section 5.4.1, where we now have an array 
of antenna elements, as illustrated in Figure 5.  Here we now have an arbitrary number N of 
antenna elements. 

As in the previous development, it remains true that,  
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  (207) 

Using Eq. (178), we identify 
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The variance in the height estimate for our geometry is then 

 22 2
sincosh R    . (209) 

Using Eq. (184), Eq. (189), and Eq. (190), this is expanded to 
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. (210) 

For 2N  , this equates to Eq. (171). 
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Figure 5.  Interferometric SAR geometry for arbitrary multiple elements. 

 

Superresolution 

Let us examine the ratio of the noise in the peak location to the width of the mainlobe, that is 
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. (211) 

This means that with good SNR, the DOA can be estimated to something much more accurate 
than the nominal width of the formed beam.  Of course, this assumes some a priori knowledge 
that we have but a single DOA for all received signals.  In any case, in some communities this 
might be termed “superresolution.”  As such, Interferometric SAR topographic mapping might 
be considered super-resolved 3-D SAR.15 
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“If you can't explain it to a six-year-old, you don't understand it yourself.”  
-- Albert Einstein 
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6 Conclusions 

We offer and repeat some key points.   

 Data are noisy.  Get over it. 

 Fitting the data to a model is called regression.  Fitting the data to a linear sum of 
functions is called “linear regression.”  This can be done with respect to one independent 
parameter, or multiple independent parameters. 

 Matrix algebra is an excellent tool for regression analysis. 

 The goodness of the data fit to a model is embodied in the covariance matrix of the 
coefficients being estimated. 

 A related measure of goodness is the Dilution of Precision (DOP).  This is just the square 
root of the diagonal elements of the covariance matrix, albeit relative to a reference data 
standard deviation. 

 There are many applications for regression analysis of radar data.  These include, but are 
not limited to, frequency estimation, delay estimation, range estimation, height 
estimation, more general position/location estimation, Doppler/velocity estimation, 
Direction of Arrival (DOA) estimation, target geometry dependencies, motion 
measurement, antenna beam pattern description, autofocus, and more. 

 

A Note About Kalman Filtering 

Herein this report we have discussed estimating a least-squares solution for a finite data set, with 
the entire data set available for the necessary calculations.  When the data set arrives sequentially 
over a lengthy interval or duration, we may wish to employ a sequential formulation of the 
calculation that can provide an updated estimate of the least-squares solution as new data 
becomes available.  This leads to a construct called the “Kalman Filter.”  It is particularly useful 
for dynamic system models, where signal or noise parameters might change over the data 
collection period.  The Kalman Filter and its many variations are discussed in many texts, with 
one by McDonough and Whalen being but one example.10 
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Figure 6.  “OK everybody, is this a good enough line?” (Miramar Beach, Florida, USA, November 2022) 
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Appendix A – Orthogonal Projections and Errors 

Here we discuss the derivation of the Least-Squares solution, and some of its properties.  This 
follows the development given by Haykin.16 

The least-squares solution chooses a projection of the data onto a subspace such that the distance 
from the observed data is minimized.  This means that the error vector is orthogonal to the data 
subspace.   

Recall that we want the best solution to the equation 

Ax b ,  (A1) 

where A defines the data space, and b is the observation vector.  Our task is to find the 
coefficient vector x that minimizes any errors that prevent equality in Eq. (A1).  We define the 
error vector as 

 ε Ax b . (A2) 

We then identify the squared error as 

   TT T T T T T T      ε ε Ax b Ax b x A Ax b Ax x A b b b . (A3) 

We find the minimum squared error solution by taking the derivative with respect to x and 
setting it to zero, thereby yielding 

ˆ2 2T T A Ax A b 0 , (A4) 

which can be manipulated to 

ˆT TA Ax A b . (A5) 

This resulting system of equations is often referred to as “normal” equations.  It may be further 
manipulated to the well-known least-squares solution 

  1
ˆ T T
x A A A b . (A6) 

We may further rearrange Eq. (A4) to 

 ˆT T  A Ax b A ε 0 . (A7) 

This makes it obvious that the least-squares processing chooses a solution x̂  such that the error 
vector ε  is orthogonal to the subspace of the data A.  This is an important and well-known 
property of least-squares calculations.  Another way of saying this is that the solution x̂  is one 
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that projects the observations b onto the subspace of A.  Plugging this into the original equation 
yields 

  1
ˆ ˆ T T
 b Ax A A A A b . (A8) 

The matrix   1T T
A A A A  is the projection operator.  The vector b̂  is the projection of b onto 

the subspace of A. 

As a final comment, we are considering here what is commonly referred to as “Ordinary Least 
Squares” (OLS), where it is assumed that the errors are confined to the observation vector b. 

If there are errors in the data in A, then we need to consider adjusting our error vector ε  
accordingly.  This is referred to as “Total Least Squares” (TLS).17,18 
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Appendix B – Least Squares and Maximum Likelihood 

Because the least-squares method is quite powerful, versatile, and simple to implement, it is 
valuable in multiple applications, as we have observed in the text of this document.  There is 
another reason that it is commonly used which is discussed in this Appendix.  In general, one of 
the drawbacks of least-squares is that it is not always optimal.  However, there is one important 
case where it does have optimal properties.  When the error has a normal distribution then the 
least-squares estimate can be shown to be the maximum likelihood estimator which carries with 
it the asymptotic optimal properties of the maximum likelihood estimator. 

We now show that the least-squares solution leads to the maximum likelihood estimator in the 
normal case.  Recall the equation 

Ax b . (B1) 

We will assume that the errors in b are zero-mean and normally distributed, which we will 
incorporate into the conditional probability with notation 

   2~ ,P N b A Ax I ,  (B2) 

where 

2 I  = covariance matrix of the normal distribution. (B3) 

We want to find the coefficient matrix x that yields the maximum likelihood estimate of 
observations b with respect to data matrix A.   

The conditional probability can be explicitly written as 
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, (B4) 

where k is the length of vector b. 

Conventionally, we will deal with the logarithm of this equation.  Consequently, the log-
likelihood under the multivariate normal assumption is 

        2
2

1 1
ln 2

2 2

k Tk 


    x b Ax b Ax . (B5) 

We wish to find the solution for x to maximize this.  We do so by setting the derivative to zero, 
namely 
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      2

1
0

2

Td d

d d
    x b Ax b Ax

x x
 . (B6) 

This may be expanded to yield 

0T T  A b A Ax . (B7) 

which of course can be rearranged to the normal system of equations 

T TA Ax A b , (B8) 

for which the solution becomes 

  1
ˆ T T
x A A A b . (B9) 

This is the same answer as derived in Appendix A.  Therefore, the maximum likelihood 
estimator is the least squares solution in this case. 

Maximum likelihood estimators are more comprehensively discussed in texts by among others 
McDonough & Whalen,10 and by Van Trees.19 
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