

How the Future is Shaping the Maritime Industry

OCTOBER 14 - 16 | NORFOLK, VA

Integrating Power Electronic Equipment into Shipboard Power Systems

Presented by: Norbert Doerry and John V. Amy Jr.

Introduction

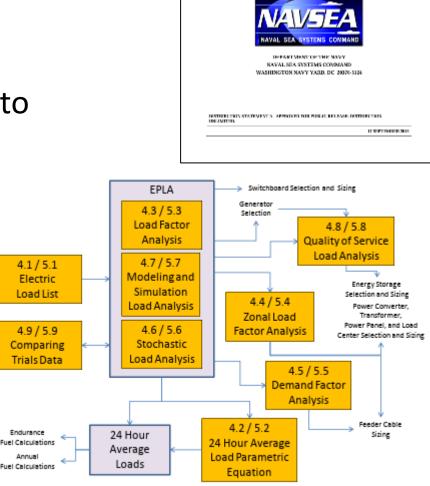
Successful Integration of power electronic equipment into shipboard power systems requires more design effort than was previously needed:

- Suitability for marine applications
- Current limiting
- Power quality
- Common-mode currents and voltages
- Electromagnetic compatibility
- Equipment cooling
- Creepage and Clearance
- Grounding system interaction
- System stability
- Part load efficiency

- Margins and service life allowances
- Black start implications
- Real and Reactive Power Sharing
- Condition-Based Maintenance
- Modularity
- Hot Swapping
- Cybersecurity
- Control System Interfaces
- Machinery Arrangements

Suitability for Marine Applications

- Structural Vibration
- Ambient temperature and humidity
- Inclined operation
- Roll and pitch
- Seaway accelerations
- Normal and alternate sources not in phase
- Prior to Detail Design
 - Study datasheets
 - Contact OEM
- Detail Design
 - Verify suitability



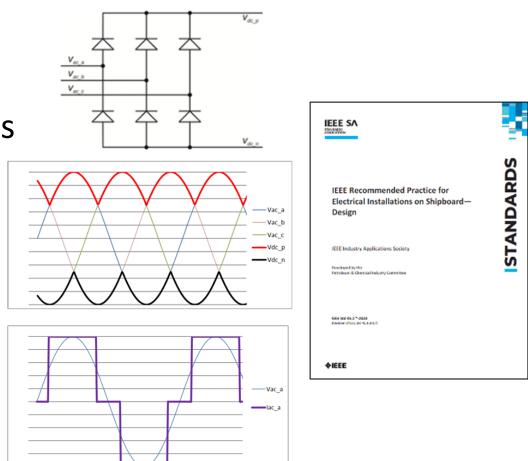
USS Sterett (DDG 104) transits heavy seas.

Current Limiting

- Power electronic equipment typically have limited overload capability
 - Current limit to rated current or to a higher current limit for a short period of time (seconds to minutes)
 - Shut down after overload period reached
- Important to ensure power electronic equipment is not overloaded
 - Electric Power Load Analysis (EPLA)
- Prior to detail design
 - Model representative systems to determine feasibility of fault protection strategy
- Detail Design
 - Perform more detailed analysis
 - Develop protection device configuration settings

Endurance

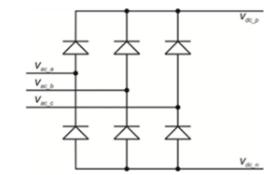
Annual

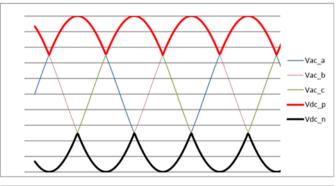

DDS 310-1 REV 1

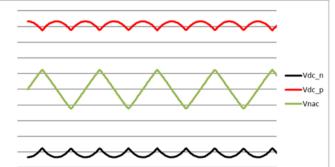
DESIGN DATA SHEET

ELECTRIC POWER LOAD ANALYSIS (EPLA) FOR SURFACE SHIPS

Power Quality

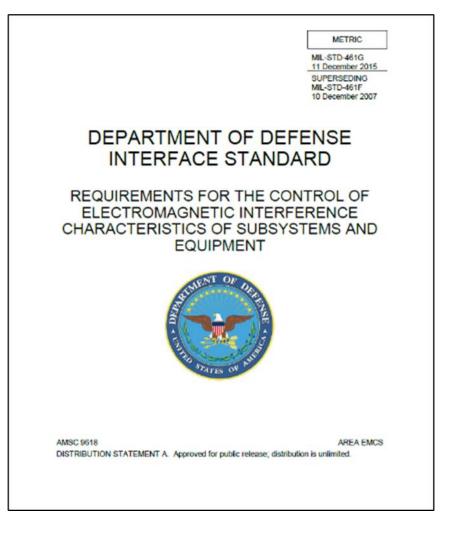

- Need to ensure power electronic equipment can adhere to power quality requirements
 - Voltage waveform properties on outputs when load current waveforms are distorted but still within specification
 - Current waveform properties on inputs when source voltage waveforms are distorted but still within specification
- Prior to detail design
 - Study data sheets
 - Contact OEM
- Detail design
 - Perform detailed power quality analysis



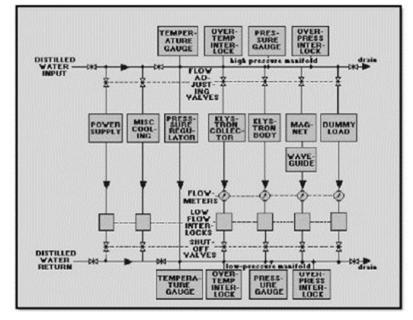


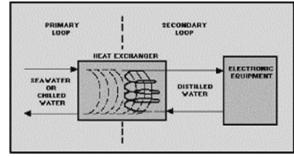
Common-Mode Currents and Voltages

- Common-mode voltage is the instantaneous average voltage of a set of conductors with respect to another voltage potential
 - Property of a set of conductors, not necessarily any single conductor.
- Power electronic equipment typically have a common-mode voltage between an output terminal (set of conductors) and an input terminal (set of conductors)
 - This common-mode voltage drives a common-mode current through the ship's hull via parasitic capacitance and EMI filter capacitors connected to the hull.
 - The common-mode circuit should be deliberately designed to avoid problems. (such as EMI)
- Prior to detail design
 - Reserve space and weight for common-mode mitigation
 - If possible, develop Thévenin equivalent models
- Detail design
 - Perform testing to support Thévenin equivalent models (if needed)
 - Design, procure, and test common-mode mitigation.



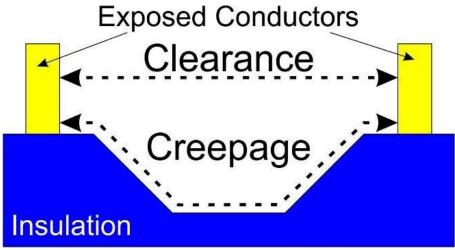
Electromagnetic Compatibility


- For rack size equipment, test methods such as MIL-STD-461 can be used.
- For large equipment, consider specifying common-mode properties independently from non-fundamental differential mode waveform properties.
- Prior to detail design
 - Reserve space and weight for EMI mitigation
- Detail design
 - Design, procure, and test EMI mitigation



Equipment Cooling

- Options
 - Air cooling
 - Fresh water cooling
 - Chilled water cooling
 - Sea water cooling
- Considerations
 - Flexible connections for shock or acoustic mounted equipment
 - Condensation prevention
 - Enable restricted operation with loss of cooling
- Prior to design
 - Study data sheets
 - Contact OEM
- Detail design
 - Testing to very performance due to loss of cooling
 - Condensation mitigation

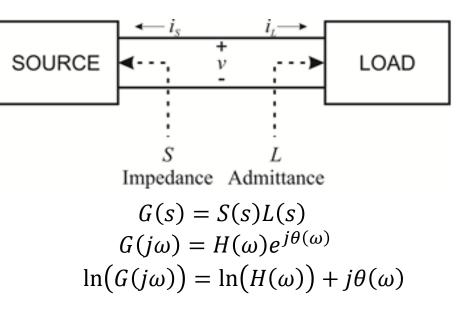

Note: a pump should be shown in the distilled water loop

Navy Electricity and Electronics Training Series Module 18-Radar Principles NAVEDTRA 14190A

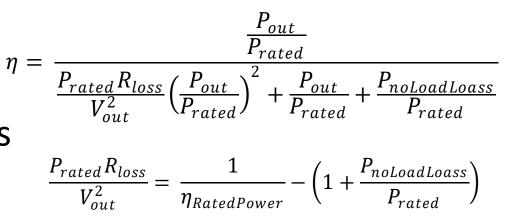
Creepage and Clearance

- Clearance
 - "Air Distance" between two conductors that could be of different potential.
- Creepage
 - Distance along the surface of an insulator between two conductors that could be of different potential.
- Requirements
 - Creepage and Clearance requirements intended to prevent flashover.
 - A function of the pollution environment.
- Prior to detail design
 - Study data sheets contact OEM
 - Locate power electronics in rooms with filtered air, or
 - Ensure power electronic equipment have adequate air intake filters, or
 - Hermetically seal power electronics.
- Detail design
 - Test for compatibility with grounding system

Grounding System Interaction


- Power electronic equipment may be designed for terrestrial applications with a solid ground
 - May not function correctly in a shipboard ungrounded or high resistance grounded system.
 - May sense the lack of a solid ground and immediately shut down.
 - May have undesirable common-mode characteristics
- Prior to detail design
 - Study data sheets
 - Contact OEM
- Detail design
 - Assess interaction with grounding system via simulation
 - Verify through simulation

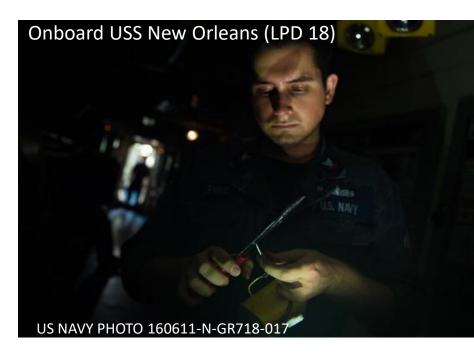
System Stability


- Small Signal Stability
 - Gain Margin
 - $\ln(H(\omega))$ must be less than 0 when $\theta(\omega)$ = 180 degrees.
 - How much less is the Gain Margin
 - Phase Margin
 - $\theta(\omega)$ must not be 180 degrees when $\ln(H(\omega)) = 0$.
 - The difference is the Phase Margin
- Large signal Stability
 - Usually assessed through time-domain simulations.
 - Requires detailed models normally not available until detail design.
- Prior to detail design
 - Study data sheets contact OEM
 - Establish bounds for admittances and impedances
- Detail design
 - Determine admittance and impedance characteristics through testing.
 - Verify system stability through simulation

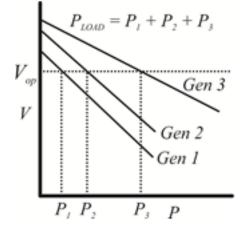
Part Load Efficiency

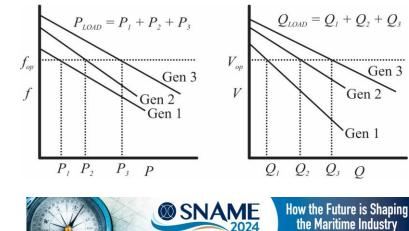
- The losses in power electronics can be modelled as a constant no load loss plus "I²R" losses
 - Efficiency is 0 at no load
 - Losses can dominate at low loads
- If power electronics is composed of multiple modules in parallel, desirable to turn off modules at low power to improve system efficiency.
- Prior to detail design
 - Study data sheets contact OEM
- Detail design
 - Verify through testing

Margins and Service Life Allowance


- Margins
 - Account for uncertainty in estimated loads
 - Varies from 5% to 20% depending on repeat design or new design
- Service Life Allowance
 - Account for future growth in load
 - Typically 20% or 1% per year of service life.
- Margins may be consumed during the design and construction process.
- Ship should deliver with the full Service Life Allowance.

Black Start Implications


- Possible interaction between cooling system and electrical system.
- Considerations:
 - Provide UPS for control power and cooling system.
 - Derive the control power from the input side of a power electronic converter.
 - Enable power electronic converter to operate at low power without liquid cooling.
- Prior to detail design
 - Black start process should be developed.
 - Document in EPS-CONOPS.
- Detail design
 - Verify process through simulation and possibly testing.

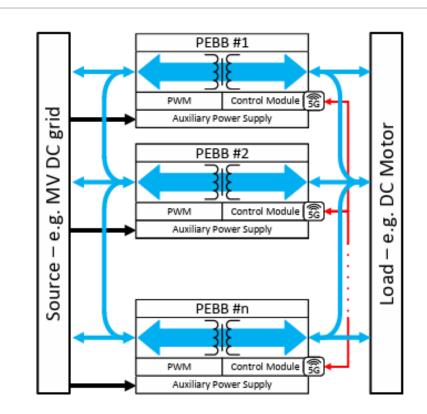


Real and Reactive Power Sharing

- Real Power sharing among paralleled sources needed to prevent cascading overloading of sources.
- For ac systems, reactive power sharing among paralleled sources needed to prevent large circulating currents from overloading sources.
- Droop is one means for real and reactive power sharing.
 - Dc systems: As the voltage drops, source provides more power
 - AC systems: As the voltage drops, source provides more reactive power. As the frequency drops, source provides more real power.
- Other types of control signals can be used to implement real and reactive power sharing.
- Prior to detail design
 - Study data sheets contact OEM
- Detail design
 - Detailed Modeling and Simulation
 - Testing

Condition Based Maintenance

- Power Conversion Equipment should be able to determine the need for maintenance before a failure occurs.
 - Time Horizon 1: in time to obtain replacement parts.
 - Time Horizon 2: in time to defer maintenance to next maintenance availability.
- Output current can also be used to assess the material condition of loads.
- Prior to detail design
 - Develop CBM strategy
- Detail design
 - Implement the strategy


Onboard USS Carl Vinson (CVN

Modularity

- Paralleled power modules.
 - N+1 allows for one to be out of service.
- Inrush current demands may require more modules than steady-state power requirements.
 - Locked rotor amps (LRA) of motors.
- Can provide "slots" to meet service life allowance but provide modules to meet service life allowance at delivery.
 - Populate modules as need appears.
- Prior to detail design
 - Develop modularity approach
- Detail design
 - Implement the modularity approach

Sebastian Baba, Serafin Bachman, Marek Jasinski, and Hong Li. "Evaluation of Modular Power Converter Integrated with 5GNetwork." Energies 2021, 14(21), 7355; https://doi.org/10.3390/en14217355

Hot Swapping

- Hot swapping allows one to replace power modules (or other type of module) without turning off the equipment.
- Connectors pins may be of different lengths to control what connects first and disconnects last
 - Longest typically the equipment ground (protective earth)
 - Pre-charge circuit
 - Main power
 - Control power Control signals
- Safety Devices
 - Shutters on connector
 - Locking devices
 - Fail safe
 - Removal / Insertion fixtures
- Cooling
 - Connector
 - Cold Plate
- Prior to detail design
 - Develop Hot Swap approach
- Detail design
 - Implement the Hot Swap approach



Four hard disks forming a RAID array

Cybersecurity

- Traditionally, threats were assumed to be from outside the ship
- Threats can occur from everywhere
 - Individuals onboard (or off) the ship
 - Compromised computer systems connected to the machinery control system
 - Malicious code hidden in components provided through the supply chain
- Cybersecurity must now be designed to an integrated architecture; an ad hoc approach layered after the fact will no longer work.
- Prior to detail design
 - Develop the cybersecurity strategy and architecture
- Detail design
 - Implement the cybersecurity strategy and architecture

Control System Interfaces

- Prior to detail design
 - Develop control system architecture
 - Control system interfaces should be understood
 - Document control system interfaces in an Interface Control Document (ICD)
 - Develop specifications for the control system
 - Allowable protocols
 - Types of messages
 - Expected equipment performance when messages received
 - Cybersecurity requirements
- Detail design
 - Update the ICD
 - Verify components meet the ICD
 - Verify system performance through simulation and/or testing

IEEE Guide for Control Architecture for High Power Electronics (1 MW and Greater) Used in Electric Power Transmission and Distribution Systems IEEE Power & Energy Society Sponsored by the Substations Committee	IEEE STANDARDS ASSOCIATION	♦ IE
Sponsored by the	for High Power and Greater) Us Transmission a	Electronics (1 MW sed in Electric Power
	IEEE Power & Energy So	ociety
	New York, NY 10016-5997 USA 11 February 2011	

Machinery Arrangements

- Considerations
 - Access to equipment and machinery.
 - Machinery access routes for replacement equipment and parts.
 - Continued operation if bilges are flooded.
 - Protection of personnel.
 - Protection of material and equipment.
 - Protection of machinery from weapons effects.
 - Noise and vibration.
 - Installation details.
 - Lifting gear and special tools.
 - Electrical terminal height.
- Prior to Detail Design
 - Prepare machinery arrangement drawings
- Detail Design
 - Remainder of machinery arrangement effort

	NOT MEASU SENSITI MIL-ST 21 Marci	D-3045
	ENT OF DEFENSE FERIA STANDARD	
U.S. NAVY	' SURFACE SHIP Y ARRANGEMENTS	

Conclusions

- Power Electronic Equipment are increasingly found on ships.
- Proper integration into the ship design requires one to consider the many aspects discussed in this presentation.
- Some integration activities should occur prior to detail design.
- Other integration activities may be deferred to detail design.

Thank you for your attention this concludes the presentation

Questions?

