Open Architecture
Machinery Control Systems

ASNE Intelligent Ships Symposium

25 May 2011

Dr. Norbert Doerry, Tim Scherer, Jeff Cohen, Nickolas Guertin P.E.

Statement A: Distribution is Unlimited
Main Concepts for a New Approach to MCS

- A Business Case for OA MCS
- Zonal Architecture Improves Acquisition and Shipboard Performance
- Naval Open Architecture and Product Lines Applied to MCS
- Next Steps
Open Architecture Defined

Naval Open Architecture:

- Business practices
- Technical practices

Produce Systems:

- Based on open standards
- Published interfaces

OA CORE PRINCIPLES

- Modular, Loose Coupling, High Cohesion
- Design Disclosure and Data Rights
- Enterprise TOC Reduction and Reuse
- Transparency and Peer Reviews
- Competition and collaboration
- ROI and Strategic Investments

Can a qualified third party add, modify, replace, remove, or provide support for a component of a system, based only on openly published and available technical and functional specification of the component of that system.
The Business Case for OA MCS - Development

- Cost Avoidance in MCS Development and Ship Construction
 - Cross-Platform Product Reuse
 - Integrated Logistics Support
 - Incremental Testing
 - Improved Schedule Performance
 - Ship Construction Risk Reduction
- Improved Performance
 - Access to Innovation
 - Support for Automation
The Business Case for OA MCS – Life Cycle

- Cost Savings over the Life-Cycle
 - Common Training
 - Common Logistics
 - Distance Support
 - Transparency of Equipment Status Internal and External to the Ship
 - Reduction in Software Maintenance – MFOP

Current State of Practice

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Aircraft Carrier</th>
<th>Surface Combatant</th>
<th>Submarine</th>
<th>Amphibious Warfare Ships</th>
<th>Combat Logistics Force</th>
<th>Support Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2012</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2016</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2017</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2019</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2020</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2021</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2022</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2023</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2024</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2025</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2026</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2027</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2028</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2029</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2030</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2031</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2032</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2033</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2034</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2035</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2036</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2037</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2038</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2039</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2040</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OA Enables Competition for development and support
Zonal Architecture – Divide and Conquer

- Benefits of a Zonal Architecture
 - Enhanced Survivability
 - Local Control and Recovery
 - Information Assurance: Defense-in-Depth
 - Decompose Network Design for hierarchy of real-time performance
 - Ship Construction testing and integration risk reduction
 - Increased Maintainability and Troubleshooting
- Smart-loads minimize MCS design complexity
Zonal Architecture Characteristics

- Compartmentalization
- Data Decomposition
Additional Features of OA MCS

- Cross-platform reuse to increase cost performance
- Elimination of proprietary design environments
 - Soft PLCs
 - Common HMI
- Escape hardware and software vendor-lock
- Reduced Enterprise Cost
- Rapid access to innovation
 - Technology Insertion
- Transparency of Design Strategy and Resources
 - Objective Architecture Defines Global Strategy
 - Open Data Model to support integration of new components
 - SDKs and Test Harnesses reduce system integration risk and test effort
OA Applied to MCS

Classic Approach
- Independently Designed and Acquired on a Ship Class Basis
- CFE by the Ship Builder
 - Typically Subcontracted

OA MCS Approach
- General MCS Functional Decomposition
- Define the MCS Objective Architecture
- Define Supplier Market Boundaries
- Apply to a specific ship class
- Evolve the Family of Systems through Product Lines
- Establish an acquisition framework for incorporating innovation
 - APB/ACB methodologies for software upgrades
 - Technology Insertion strategies for hardware sustainment
- MCS Reusable Modules as GFE for modification and redelivery

Naval Open Architecture:
- Business practices
- Technical practices

Produce Systems:
- Based on open standards
- Published interfaces
Open Product Lines – the Next Step in the OA Revolution

- Product Line Focus: Build once, use subsequent variations
 - Lower Cost to Upgrade
 - Higher Quality
 - Cross-platform utility
 - Forward/Backward compatibility

- Reuse
 - Open and managed reused components – strategic reuse
 - Published architecture that specifies how features and behaviors are varied between products
 - Assets can be competed as technology advances and/or mission needs change
 - Reusable test scripts, plans, assets and harnesses shorten process and simplify execution

Product Lines – Cross-platform use via variation points

Product Line Management

- Engineers
 - Requirements
- Architects
 - Design Models
- Developers
 - Source Code
- Testing & Validation
 - Test Cases

Reusable Core Assets

- Shipclass ‘A’
- Shipclass ‘B’
- Shipclass ‘C’
We are not alone

- Several OA efforts in the Navy that are launching points for Open Product Lines and OA MCS
 - PEO IWS: Combat Systems Objective Architecture
 - PEO SUBS: SWFTS Objective Architecture
 - PEO U&W: Future Airborne Capability Environment
 - PEO C4I: Common Afloat Network Enterprise Services
 - DASN RDT&E: Naval Enterprise OA
 - Industry Consortia: Open PLC
 - ASW and MPRF COI’s: Data Modeling
 - OMG: Real Time Data Distribution Service
Guiding Principles

- Reusable, multi-platform, Product Line Modules
- Alignment of MCS Boundaries with physical ship zones
 - Zonal Survivability
 - Improved Construction Performance
- Partition functionality among local, zonal and shipwide controls
 - Ship Construction Testing and System Checkout
- Control Environment Abstraction for configuration independence
- Network Connectivity off-board to enable distance support, status reporting, and eventually MFOP
- Use a hardware business model that uses the commercial market
 - Hardware/Software Independence
 - Technology Insertion production and sustainment model
Evolving Standards to Prevent/Escape Vendor Lock

- Naval Enterprise Architecture Description Document
- Open PLC standard - IEC 61131-3
- Distributed Control and Automation standard IEC 61499
- OMG Real Time Data Distribution Service (DDS) standard
- Understand and use Government Rights to Data

https://acc.dau.mil/oa
Next Steps

- Create a MCS Communication Standard and Data Message Content
 - Update MIL STD 1399
- Establish a MCS COI
 - Develop a MCS Data Model
- Write a MCS ADD
 - Evolution into an Naval Enterprise ADD
 - Build off PEOs IWS and Subs ADDs
- Contribute to the Cross-SYSCOM IA Defense-in-Depth Architecture
 - Distance Support reduces support cost; connectivity is needed
- Reusing products from Navy programs
 - Commonality Shelf Products
 - Common Display System/Common Processing System
Backup
ACB / TI Notional Model

- Requires transition to COTS computing via initial TI
- Each ACB builds on prior ACBs while adding new capabilities
- Transitioned ships receive new ACB every 2 years
- Every ship receives every other TI
Crawl, Walk, Run – Reducing Variation

- Capture the value of recent commonality studies
 - VME
 - PLC
 - Network
 - Protocols
 - Workstation
 - Topology
 - Functionality
 - Methodology

- Target the Cost Drivers
 - System Design and Test
 - Acquisition and Installation
 - ILS
 - Corrective Maintenance and Obsolescence