MVDC Grounding and Common Mode Current Control

Dr. Norbert H. Doerry Dr. John V. Amy Jr. IEEE Electric Ship Technologies Symposium (ESTS 2017) Arlington, VA August 15-17, 2017

MVDC Reference Architecture

Approved for Public Release Distribution is unlimited

Introduction to Common Mode

- Common mode currents are also called leakage current: the return path of common mode currents is typically through the ship's hull.
- Common mode currents flow through the hull due to a.c. voltages of a power systems neutral with respect to the hull potential interacting with parasitic capacitances.
 - The neutral voltage with respect to ground is the instantaneous average of all the power system conductor voltages with respect to ground.
- The difference in power system neutral voltages between the input and the output of a power electronics based converter is the dominant source of common mode current.
- Common mode impedances are a function of frequency.
- Common mode currents can result in safety hazards and corrosion.
- Common mode currents can be a source of Electromagnetic Interference (EMI)
- Common mode currents are impacted by the grounding method.

Simplified Model

- Common Mode model derived from 3 phase model
- Eliminates components that only impact normal "Differential Mode"
- Combines paralleled components.
- Based on method described by Brovont and Pekarek presented at ESTS 2015

4

Metrics of Interest

- Magnitude of common mode impedance seen by a common mode source as a function of frequency
 - Indicator of common mode currents local to equipment
- Magnitude of common mode "transadmittance" as a function of frequency
 - Ratio of common mode current in the distribution feeder (d.c. bus) to the common mode voltage
 - Measures how well common mode current is contained to the vicinity of the equipment.
- Design Objectives:
 - Prefer to have common mode currents depend on design variables and not hard to predict parasitic values
 - Minimizing transadmittance at frequencies of interest is of higher priority than maximizing common mode impedance
 - Need to keep common mode impedance high enough to limit common mode current local to the equipment.

7/14/2017

A.C. Side Hard Grounding

ohms

mho

Impedance: common mode voltage associated with Rectifier Power Electronics divided by the common mode current through the Rectifier Power Electronics.

Transadmittance: common mode current through the DC bus divided by the common mode voltage associated with Rectifier Power Electronics.

Impedance Magnitude

Approved for Public Release Distribution is unlimited

A.C. Side High Resistance Grounding

D.C. Side shunt capacitors

D.C. Side Choke

ohms

Approved for Public Release Distribution is unlimited 10

100

1000

Frequency (Hz)

1x10⁶

20170226-cm-gl-pg-choke.txt

100000

10000

Choke and Shunt Capacitors

Choke, Shunt Capacitors, and Damping

Impact of Line to Ground Fault on Common Mode Current

Reduce Common Mode Voltage

- Provide Symmetry
- Design power electronic gating algorithms to minimize common mode voltages
- Design rotating machines and associated power electronics synergistically to minimize common mode voltages
 - Consider two 3-phase systems 180 electrical degrees apart
 - Independently drive windings

Summary

- Control of Common Mode Currents must be accomplished both at the total system level and at the module level.
- Need to develop common mode models
- Common mode impedance and transadmittance are good metrics to help characterize common mode performance
- Need to consider impact of ground faults
- Need to consider methods of reducing common mode voltages