Preliminary and Contract Design

Dr. Norbert Doerry

January 26-27, 2016
Agenda

• Introduction
• Requirements
• Contract Package
• Risk and Opportunities
• Design Activities
• Conclusion
Acquisition Process

Joint Capabilities Integration & Development System (JCIDS) Analysis
- Functional Area Analysis
- Functional Needs Analysis
- Functional Solution Analysis

Concept Refinement
- Analysis of Alternatives

Technology Development
- Ship Preliminary Design
- Ship Contract Design

System Development & Demonstration
- Lead Ship Detailed Design & Construction
- Design Readiness Review
- Lead Ship Delivery

ICD - Initial Capabilities Document
- Draft Capabilities Development Document
- CDD - Capabilities Development Document

Draft Capabilities Development Document

Preliminary and Contract Design

Design Synthesis

Requirements Analysis
- Functional Allocation

Design Options
- Costs – Risks – Capabilities

Force Architecture Options
- Ship Capability Options
- Ship Subsystems Options
Notional Acquisition Strategies

<table>
<thead>
<tr>
<th>Feasibility Studies</th>
<th>Preliminary Design</th>
<th>Contract Design</th>
<th>Detail Design</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy</td>
<td>SS</td>
<td>SS Collaborative</td>
<td>SS</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Collaborative</td>
<td>SS</td>
<td>SS</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Collaborative w/R&D</td>
<td>SS</td>
<td>SS</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Collaborative</td>
<td>SS</td>
<td>SS Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Industry</td>
<td>SS Collaborative</td>
<td>SS</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Industry – 1 shipyard w/follow</td>
<td>SS</td>
<td>NN</td>
<td>Industry</td>
</tr>
<tr>
<td>Navy</td>
<td>SS Industry - competitive</td>
<td>DS</td>
<td>DS</td>
<td>Industry</td>
</tr>
<tr>
<td>SS Industry</td>
<td>DS</td>
<td>SS Collaborative</td>
<td>Industry</td>
<td>Industry</td>
</tr>
</tbody>
</table>

SS Source Selection **DS** Down Select **NN** Negotiated awards

Enable Option for Navy Led or Collaborative PD / CD
Historic Duration of PD - CD (months)

<table>
<thead>
<tr>
<th>Preliminary Design</th>
<th>Contract Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDG 51</td>
<td>Navy - 22</td>
</tr>
<tr>
<td>Navy - 9</td>
<td>Navy - 25</td>
</tr>
<tr>
<td>LPD 17</td>
<td>Navy - 16</td>
</tr>
<tr>
<td>Navy - 11</td>
<td>Collaborative - 18</td>
</tr>
<tr>
<td>LHD 1</td>
<td>Navy - 18</td>
</tr>
<tr>
<td>Navy - 7</td>
<td>Collaborative - 18</td>
</tr>
<tr>
<td>LHA(R)</td>
<td>Navy - 18</td>
</tr>
<tr>
<td>Navy - 18</td>
<td></td>
</tr>
<tr>
<td>CVN 21</td>
<td>Navy Point Design - 24</td>
</tr>
<tr>
<td></td>
<td>Industry - 10</td>
</tr>
<tr>
<td>TAKE</td>
<td>Navy - 6++</td>
</tr>
<tr>
<td></td>
<td>Industry - 15-19</td>
</tr>
<tr>
<td>Sealift</td>
<td>Industry - 24</td>
</tr>
<tr>
<td></td>
<td>Industry - 24</td>
</tr>
<tr>
<td>DDX</td>
<td>Industry - 12</td>
</tr>
<tr>
<td>LCS</td>
<td>Industry - 7</td>
</tr>
<tr>
<td>MLP</td>
<td>Industry - 6</td>
</tr>
<tr>
<td>SSC</td>
<td>Navy - 12</td>
</tr>
</tbody>
</table>
PD – CD: Simplified

Preferred Concepts
Draft CDD
ICD
Budget
Risk Mitigation Activities

PERFORM
PRELIMINARY AND
CONTRACT DESIGN

Contract Package
CDD
Cost Estimate
Performance Prediction

1.5 to 4 Years
Preliminary Design vs Contract Design

• Preliminary Design (~100 man-years)
 – Further reduce the design space from Concept Exploration via more extensive product definition and analysis
 – Refine CDD requirements
 – Develop derived requirements
 – Mature technology / Reduce risk
 • Typically the schedule driver
 – Mature cost estimates

• Contract Design (~200 man-years)
 – Mature design
 – Translate design and Ship System Specification into a Shipbuilding Specification
 – Contribute to development of remainder of Contract Package.
Design Iteration

• Design Iteration reduces design process complexity, from Nam P. Suh:
 – “For a system to operate stably for a long time, functional periodicity must exist in the system or must be built into the system”
 – Addresses Combinatorial Complexity in the design process:
 The accuracy or properties of the system change with time – either due to internal or external reasons such that the system can no longer reliably achieve its objectives.

• In PD and CD, design iterations are typically on the order of 10-13 weeks.
Design Iteration (Example)
Requirements
Requirements

• ICD and preliminary CDD exist at beginning of PD.
• Some CDD requirements may not initially be known.
• Some CDD requirements may require study to determine appropriate values.
• Some CDD requirements may be relaxed once cost impact is fully understood.
• New CDD requirements may become apparent as the Projected Operational Environment (POE) evolves.

Recommend conducting a Requirements Risk Review
Requirements Risk Review

• Categorize each CDD requirement
 – Certain
 • Requirement known and unlikely to change
 – Mid Term uncertain
 • Requirement currently unknown or likely to change
 • Value expected to be defined within 1 year after MS A
 – Far Term uncertain
 • Requirement currently unknown or likely to change
 • Value expected to be defined before MS B
 – Modernization
 • Requirement currently unknown or likely to change over service life

• For all but “certain” requirements:
 – Develop a range for each requirement (not a threshold and objective)
 – Identify work necessary to determine the requirement
 – Develop a modularity / flexibility / modernization strategy to enable an affordable and timely response to fixing / changing the requirement
Contract Design Package
Contract Design Package

- Initially, as part of the Request for Proposal (RFP), describes what the Government wants the shipbuilder to do and deliver.
- Establishes a scope of work to enable negotiations between the Government and shipbuilder on the cost/price of the contract.
 - Contract Design Package may change as a result of negotiations.
- Note that once the shipbuilder is under contract, any change to the scope requires a contract modification.
Uniform Contract Format

• Part I The Schedule
 A Solicitation/Contract Form
 B Supplies or Services & Prices or Costs
 C Specification/SOW/SOO/ORD
 D Packaging & Marking
 E Inspection & Acceptance
 F Deliveries or Performance
 G Contract Administration Data
 H Special Contract Requirements

• Part II Contract Clauses
 I Contract Clauses

• Part III List of Documents, Exhibits, & Other Attachments
 J List of Attachments

• Part IV Representations & Instructions
 K Representations, Certifications, & Other Statements
 L Instructions, Conditions, & Notices to Offerors or Quoters
 M Evaluation Factors for Award
Typical J Attachments

1. Ship Specifications
2. Contract Data Requirements List
3. Schedule A – Government Furnished Equipment
4. Schedule B – Technical Services
5. Schedule C – Government Furnished Information
7. SOW for Provisioning Technical Documentation (PTD)
8. Configuration Status Accounting (CSA) Requirements Statement (CSR)
9. Contractor Cost Data Reporting Plan
10. R Supply File Formats
11. C4ISR Integration Plan
12. ...
13. Standardization Program Plan
15. Financial Accounting Data Sheet(s)
16. Small Business Subcontracting Plan
17. Ship Weight Factors
18. ...
19. Factors for Determining Loads
20. NAVSEA 4280, Unit Price Analysis
21. NAVSEA 4280-2, Summary
22. ...
23. Mission Critical CFE
24. Contract Options
J2 Contract Data Requirements List

• Data Requirements specified using the standard DD Form 1423

• “Paper Based”
J3 GFE LIST

• List of all Government Furnished Equipment
• Generally Provides the nomenclature name of the GFE and the date that it will be provided to the Contractor
• List does not
 – Provide detailed description of the GFE
 – Indicate what the GFE is to be used for
J5 GFI LIST

• List of Government Furnished Information
• Generally Provides a list of the documents / data and the date the Government will provide a contractor
• Does not indicate
 – Contents of the GFI
 – What the GFI is to be used for
Statement of Work vs Shipbuilding Specification

• Statement of Work (SOW) describes activities that the shipbuilder must do.
• Shipbuilding Specification describes the properties of the end product.
 – Usually includes test requirements
 – Can specify design methods

The lead for SOW development is typically the Program Office
The lead for Shipbuilding Specification development is typically the Ship Design Manager
Shipbuilding Specification

• Specification Sections
 – Organized by SWBS
 • 000 General Guidance and Administration
 • 100 Hull Structure
 • 200 Propulsion Plant
 • 300 Electrical Plant
 • 400 Command and Surveillance
 • 500 Auxiliary Systems
 • 600 Outfit and Furnishings
 • 700 Armament
 – Naval Combatant Design Specification provides standard clauses

• Project Peculiar Documents (PPD)
 – Typically component specifications or standards for ship unique cases

• Contract Drawings
 – Sometimes specified for guidance only
Shipbuilding Specification Considerations

• Requirements are different from design
 – Infinitely many designs can meet a specific set of requirements
 – Shipbuilding specifications that are too restrictive can result in higher costs by ruling out less expensive configurations
 – Shipbuilding specifications that are not restrictive enough can result in expensive engineering changes and rework

• How does one specify a design space?
 – Any configuration in the design space would be acceptable to the Navy

• How do you relate testing and analyses to validate a design to the validity of the design space defined by the specification?

• How does one analyze and test a shipbuilding specification to ensure it describes a design space acceptable to the Navy and is not too restrictive?

• How does one ensure the analyses, tests, and trials specified for detail design and construction will, at minimum cost, validate that the delivered product will meet requirements?

• What is the best way to trace specifications to requirements (of all types)
 – CDD
 – Law
 – Regulations
 – Policy
Impact of Acquisition Strategy

• Competition
 – Desire a larger design space to enable shipyards to submit bids that are optimized to their production processes and facilities.

• Sole-Source
 – Desire a smaller design space because it enables optimization to occur during PD/CD and it facilitates a better definition of the scope of work: less uncertainty.
Shipbuilding Specification vs Ship System Specification

• Shipbuilding Specification
 – Governs design activity during Detail Design and Construction.

• Ship System Specification
 – Governs design activity during Preliminary and Contract Design
 – Evolving description of the design space
Configuration Management

• Tracking the evolving Ship System Specification and Shipbuilding Specification is challenging
• Need to ensure self-consistency
• Need to ensure completeness
• Need traceability
• Need to ensure changes are properly vetted
• Need to ensure alignment with Technical Authorities.
Risk and Opportunities
Risk Definitions

- Key DoD and Navy issuances define it as follows:
 - "Risk is a measure of future uncertainties in achieving program performance goals and objectives within defined cost, schedule, and performance constraints."
 - "Risk is the potential for mishaps or other adverse variation in the cost, schedule or performance of a program or its products."

- Common elements of these definitions include
 - Potential future event that if prevented would also prevent a potential consequence from occurring. Any future event will include:
 - A likelihood of occurrence
 - A consequence on a program if it occurs
 - Cost, Schedule and Performance parameters, which allow risks to be considered in relation to their impact on different program areas
Risk Insights

• Elements of the risk should include
 – Definition of the risk event (If it happens, it’s a problem)
 – When the risk event occurs
 – The operational consequences of the risk event
 – The corrective action that is planned be taken should the risk event occur at the time specified
 – The cost of the corrective action

• The expected value of the risk is the probability that the risk event occurs multiplied by the cost of the corrective action
 – This is a real cost to the program and should be reflected in the cost estimate

• Much of Preliminary Design is about understanding, mitigating, and reducing risk before they become problems requiring corrective action.
Risk Activity Diagram

Evaluate Possibility of future event that causes adverse consequences

Did the event occur?

- P(x=no) → DONE
- P(x=yes) → Take Corrective Action

NOW

Expected Cost of Risk is
\[P(x=yes)C(x=yes) \]

FUTURE

Cost of Risk is
Either $0 or \[C(x=yes) \]
Risk Mitigation

• A Risk Mitigation Activity is an investment prior to the “future event” consisting of potentially two parts:
 – A “test” or “analysis” to improve the assessment of the probability of the future event
 – A set of actions to reduce the probability of the future event, or the cost of corrective action in response to the future event, based on the results of the test
 • Each outcome of the test is associated with an action
 • One possible action is the “Null” Action.

• The expected value of the cost of the risk and risk mitigation should be less than the expected value of the cost of the risk if no mitigation is performed.
Evaluate Possibility of future event that causes adverse consequences

Take Action A

P(y=A)

Results of Test

P(y=B)

Take Action B

Did the event occur?

P'(x=no,y)

DONE

P'(x=yes,y)

Take Corrective Action

FUTURE

Expected Cost of Risk is

C(test) + P(y=A)C(y=A) + P(x=yes | y=A)C'(x=yes,y=A) + P(y=B)C(y=B) + P(x=yes | y=B)C'(x=yes,y=B)

NOW

Cost of Risk is

($0 or C'(x=yes,y)) + C(test) + (C(y=A) or C(y=B))
Risk Mitigation Insights

• Risk Mitigation consisting of “Test” alone
 – Increases expected value of risk prior to the test by the cost of the test
 – May either increase or decrease expected value of risk after the test

• Risk Mitigation consisting of a Mitigation Action without a test
 – Cost effective if the expected value of the risk decreases when the mitigation action is incorporated into the plan.
 – May want to consider this just “normal planned work” instead of a risk mitigation activity.
Typical Risk Form

Risk Summary Worksheet

<table>
<thead>
<tr>
<th>Description of Risk</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Basic Cause</td>
<td></td>
</tr>
<tr>
<td>Consequence if Risk is Realized</td>
<td></td>
</tr>
</tbody>
</table>

Risk Reduction Plan

<table>
<thead>
<tr>
<th>Action/Event</th>
<th>Date</th>
<th>Success Criteria</th>
<th>Risk Level if Successful</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What if unsuccessful?
Risk Waterfall Chart

- Typically Success Oriented
- Typically does not differentiate between tests and design changes
- Provides no insight on required activities based on results of tests
Opportunities

• Analogous to risks – but with favorable outcomes
• Goal should be to incorporate features now into the design to take advantage in the future of an opportunity if the expected value of the cost of the ship decreases if the feature is incorporated.
 – Use proven solutions as a baseline
 – Incorporate options for incorporating developmental solutions should testing prove viability.
• Real options analysis may prove useful.
Design Activities
Preliminary Design Activities

- Establish principal characteristics of the design
- Select major equipment
- Establish Functional Baseline
 - Conduct System Functional Review (SFR)
- Conduct Trade-studies
- Execute Risk Mitigation Plans
- Assess feasibility and performance
- Estimate Cost
- Support CDD development and approval
- Develop and Maintain the Ship System Specification
- Develop Design Certification Matrix
- Develop Preliminary Design Report
- Track design metrics (for example: design margin consumption)
Contract Design Activities

• Develop the Contract Design Package
• Establish the Allocated Baseline
 – Conduct Preliminary Design Review
• Complete Risk Mitigation Activities for risks impacting the Contract Design Package
• Modify the design to deal with problems
• Modify the design to take advantage of opportunities
• Assess Feasibility and Performance
Design Process Considerations

• The specification that everyone likes technically is probably not affordable
 – Need capability to understand impact of relaxing specification requirements

• The order of design decisions is important
 – Need tools to guide the SDM in scheduling studies and making decisions
Decision Oriented Systems Engineering

- View design process as an evolution of knowledge punctuated by key decisions
- Define a network of key decisions supported by quality information and human judgment
- Map key decisions and information development to schedule
Design Tools
What do we mean by Design Tools?
What do we need from Design Tools?

• Pre-Milestone A:
 Characterize costs and risks for potential ship requirement sets

• Preliminary and Contract Design:
 System level functional design and total ship integration
PD - CD Tools

• Ultimate output is de-risked design & specifications
• Many people involved (hundreds for complex combatant)
• Many tools, run by many subject matter experts
• Major challenge is integrating efforts from many disciplines into coherent design that affordably meets requirements at acceptable risk level

• Some PD-CD tool examples:
 – Integrated Hydrodynamic Design Environment (IHDE)
 – Navy Enhanced Sierra Mechanics (NESM) – Shock/Damage
 – Finite Element Modeling (Structures)
 – Various topside electromagnetic integration tools
PD – CD Tool Challenges

• Enabling set-based design approach
 – Give individual system experts maximum flexibility to design for affordability without premature constraints
 – Delay overall ship configuration decisions until integrator understands impacts to all systems

• Validated data to support tools
 – Component libraries
 – Component models
 – Reliability and Maintainability data
 – Workload requirements

• Design practices and criteria for new technology
 – Ship systems
 – Design and analysis methods
 – Design methods

• Workforce experience
 – How does one get 10,000 hours of relevant experience?
Conclusion

• The ultimate product of PD-CD is a contract design package
• Other products needed to support acquisition
• Should concentrate on Risk Management and generating quality information / knowledge to inform design decisions
References

• S9800-AC-MAN-010 Ship Design Manager (SDM) and Systems Integration Manager (SIM) Manual

• MIL-HDBK-245 Handbook for Preparation of Statement of Work

• MIL-STD-961 Defense and Program-Unique Specifications Format and Content
Backup
Typical Design Phase Deliverables

<table>
<thead>
<tr>
<th>Exploratory Design and Force Architecture</th>
<th>Pre-AoA</th>
<th>AoA</th>
<th>Pre-Preliminary</th>
<th>Preliminary (Functional Baseline)</th>
<th>Contract (Allocated Baseline)</th>
<th>Detail (Product Baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs to EMP on planned use of design tools</td>
<td>Inputs to EMP on planned use of design tools</td>
<td>Inputs to EMP and SEP on planned use of design tools</td>
<td>Inputs to EMP and SEP on planned use of design tools</td>
<td>Inputs to EMP and SEP on planned use of design tools</td>
<td>Inputs to EMP and SEP on planned use of design tools</td>
<td>Inputs to EMP and SEP on planned use of design tools</td>
</tr>
<tr>
<td>Modeling and Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs to EMP on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, SEP, and Test Planning on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, SEP, and Test Planning on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, SEP, and Test Planning on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, SEP, and Test Planning on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
<td>Inputs to EMP, SEP, and Test Planning on planned use of Modeling and Simulation; development of Modeling and Simulation planning documentation including VV&A as needed</td>
</tr>
</tbody>
</table>
Typical Design Phase Deliverables (cont)

<table>
<thead>
<tr>
<th>Category</th>
<th>Exploratory Design and Force Architecture</th>
<th>Pre-AoA</th>
<th>AoA</th>
<th>Pre-Preliminary</th>
<th>Preliminary (Functional Baseline)</th>
<th>Contract (Allocated Baseline)</th>
<th>Detail (Product Baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Assessment and Development</td>
<td>Technology assessment and planning as required to support design</td>
<td>Technology assessment as required to support design, Gate 1 and AoA planning</td>
<td>Technology assessment as required to support design, AoA and Gate 2</td>
<td>Technology assessment and development as required to support design and Gate 1</td>
<td>Technology assessment and development as required to support design and Gates</td>
<td>Technology assessment and development as required to support design and Gates</td>
<td>Technology assessment and development as required to support design and Gates</td>
</tr>
<tr>
<td>Manufacturing Readiness Assessment</td>
<td>Manufacturing readiness assessment and planning as required to support design</td>
<td>Manufacturing readiness assessment as required to support design, Gate 1 and AoA planning</td>
<td>Manufacturing readiness assessment as required to support design, AoA and Gate 2</td>
<td>Manufacturing readiness assessment and development as required to support design and Gates</td>
<td>Manufacturing readiness assessment and development as required to support design and Gates</td>
<td>Manufacturing readiness assessment and development as required to support design and Gates</td>
<td>Manufacturing readiness assessment and development as required to support design and Gates</td>
</tr>
<tr>
<td>Mission Scenarios, Threat Sets, CONOPS and Design Reference Mission</td>
<td>Develop mission scenarios, Threat Sets, CONOPS and Design Reference Mission</td>
<td>Updates as required</td>
<td>Updates as required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Body Compliance</td>
<td>Define initial approach and document in EMP</td>
<td>Define initial approach and document in EMP</td>
<td>Define initial approach and document in EMP and SEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Development status:

- Ship Specification inputs as required
- ABS (for T-ships as applicable) and other regulatory reviews of the Design and Inspections
Typical Design Phase Deliverables (cont)

<table>
<thead>
<tr>
<th></th>
<th>Exploratory Design and Force Architecture</th>
<th>Pre-AoA</th>
<th>AoA</th>
<th>Pre-Preliminary (Functional Baseline)</th>
<th>Preliminary (Functional Baseline)</th>
<th>Contract (Allocated Baseline)</th>
<th>Detail (Product Baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Forms and Cost Estimate</td>
<td>Cost Forms to support SEA 05C ROM level cost estimates</td>
<td>Cost Forms to support SEA 05C ROM level cost estimates</td>
<td>Cost Forms to support SEA 05C ROM level cost estimates</td>
<td>Cost Forms to support SEA 05C budget level cost estimates</td>
<td>Cost Forms to support SEA 05C budget level cost estimates</td>
<td>- Cost Forms to support SEA 05C budget level cost estimates</td>
<td>- Shipbuilder cost reporting</td>
</tr>
<tr>
<td>SDS</td>
<td>Develop plan for Gate 3 and complete following CDD approval for Gate 4</td>
<td>Complete following CDD approval for Gate 4</td>
<td>- Specification Management Plan</td>
<td>- May start and even complete and approve Specification depending on Acquisition Strategy</td>
<td>- Complete and approve Specification</td>
<td>- Possible change from approved System Specification to an approved Shipbuilding Specification</td>
<td>- Engineering Change Proposals - Waivers and Deviations</td>
</tr>
<tr>
<td>Ship Specification</td>
<td>- Specification Management Plan - May start and even complete and approve Specification depending on Acquisition Strategy</td>
<td>May start and even complete and approve Specification depending on Acquisition Strategy</td>
<td>- Initial SPM and SPM development plan</td>
<td>Update</td>
<td>Update</td>
<td>Shipbuilder SPM</td>
<td></td>
</tr>
<tr>
<td>Data Requirements</td>
<td>DRL inputs as required for contracting</td>
<td>DRL inputs as required for contracting</td>
<td>DRL inputs as required for contracting</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ship Product Model (SPM)</td>
<td>Define initial approach and document in EMP</td>
<td>Define initial approach and document in EMP</td>
<td>Define initial approach and document in EMP and SEP</td>
<td>- Initial SPM and SPM development plan</td>
<td>Update</td>
<td>Shipbuilder SPM</td>
<td></td>
</tr>
</tbody>
</table>
Prepare for Detail Design and Construction
Enable successful Detail Design & Construction

• Ensure scope of work is clearly understood by Government (SUPSHIP et al.) and Shipbuilder

• For areas with significant remaining risk, have a fallback plan
 – Ensure the fallback plan is implementable in an affordable way
 – Ensure funds available to cover risks

• Understand impact of Contract Type: (Cost vs Fixed Price)

• Understand the impact of incentives

• Avoid causes for future claims
Cost vs Fixed Price

• Fixed Price contracts
 – Provide acceptable deliverables in accordance with the contract
 – Fee can be fixed or incentivized

• Cost type contract
 – Make a good faith effort to meet the Government’s needs within the estimated costs in the Contract.
 – Fee can be fixed or incentivized
Major Causes for Claims

- Bidding too low – Loss of fee
- Faulty or inadequate design
- Construction problems
- Delay and Disruption
- Problems with Subcontractors
- Weather
- Strikes
- Schedule Slippage
- Late / Faulty GFE / GFI
- Combat Systems Integration Problems
- Software Problems
- Accidents (Fire / Flooding)
- Testing Problems / Delays

RADM William C. Wyatt, USN (RET)
Shipbuilding Contracts – Changes, Claims, and Claims Avoidance
24 April 2008
Avoiding Claims

- Limit changes after award
- No constructive Changes
- Timely Gov GFE / GFI
- Accurate warranted drawings & data
- Timely and fair progress system and payments
- Timely adjudication of changes (no backlogs)
- Deal with delay and disruption even if it can not be accurately measured
Avoiding Claims continued...

- Demand only what contract calls for
- Do not “go around” prime contractor to his subs
- Insure equity exists in all contractor dealings
- Contractor deserves a fair profit for performance
- Keep arms length relationships with contractors (standard of conduct)