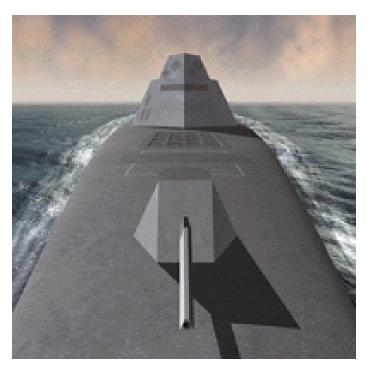


Functional Decomposition of a Medium Voltage DC Integrated Power System

ASNE SYMPOSIUM 2008 SHIPBUILDING IN SUPPORT OF THE GLOBAL WAR ON TERRORISM April 14-17, 2008 Mississippi Coast Coliseum Convention Center

CAPT Norbert Doerry

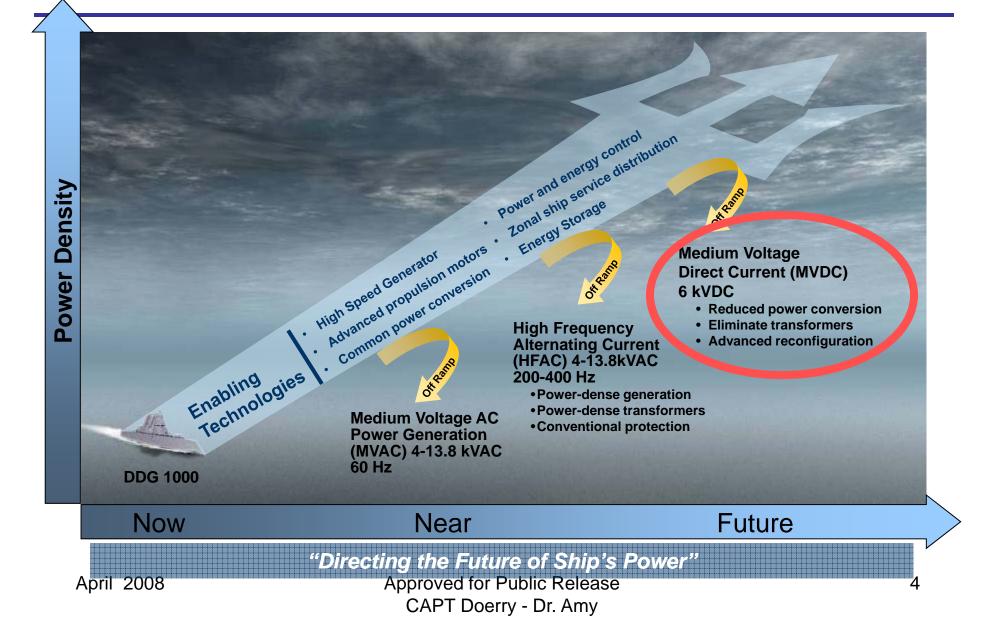

Technical Director, Future Concepts and Surface Ship Design Naval Sea Systems Command

> Dr. John Amy Director, Power Systems BMT Syntek Technologies

Approved for Public Release

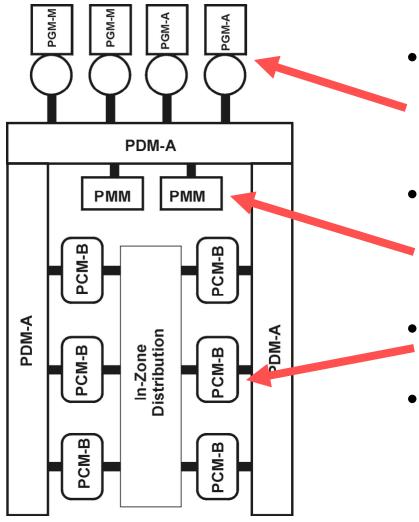
- NGIPS Technology Development Roadmap
- Notional MVDC Architecture
- Functional Requirements
 - Power Management Normal Conditions
 - Power Management Quality of Service
 - Power Management Survivability
 - System Stability
 - Fault Response
 - Power Quality
 - Maintenance Support
 - System Grounding
- Conclusions

<u>Vision</u>: To produce affordable power solutions for future surface combatants, submarines, expeditionary warfare ships, combat logistic ships, maritime prepositioning force ships, and support vessels.


Ser 03D / 349 30 New 2007
NEXT GENERATION INTEGRATED POWER SYSTEM NGIPS Technology Development Roadmap
APPROVED FOR PUBLIC RELEASE
ADMENTED FOR POTENCE RELEASE

The NGIPS enterprise approach will:

- Improve the power density and affordability of Navy power systems
- Deploy appropriate architectures, systems, and components as they are ready into ship acquisition programs
- Use common elements such as:
 - Zonal Electrical Distribution Systems (ZEDS)
 - Power conversion modules
 - Electric power control modules
- Implement an Open Architecture Business and Technical Model
- Acknowledge MVDC power generation with ZEDS as the Navy's primary challenge for future combatants


NGIPS Technology Development Roadmap

NAVAL SEA SYSTEMS COMMAND

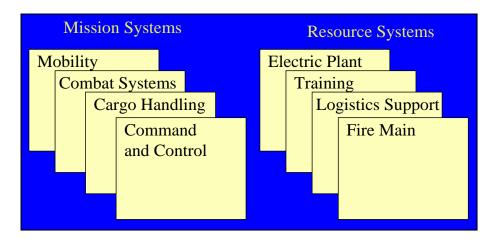
Notional MVDC Architecture

- Power Generation Modules produce Medium Voltage DC Power
 - Between 6 and 10 kV
- Large Loads (such as Propulsion Motor Modules) interface directly to the MVDC bus
- PCM-B is interface to in-zone distribution system
- Control provided by PCON

Location of Energy Storage within Architecture still an open issue

- Power Management Normal Conditions
- Power Management Quality of Service
- Power Management Survivability
- System Stability
- Fault Response
- Power Quality
- Maintenance Support
- System Grounding

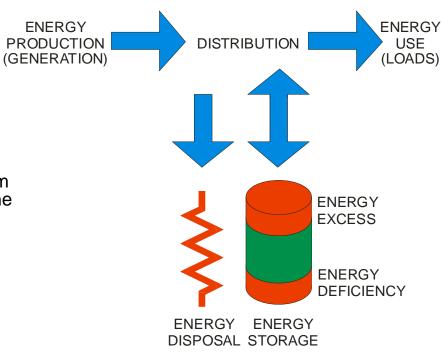
Power Management – Normal Conditions

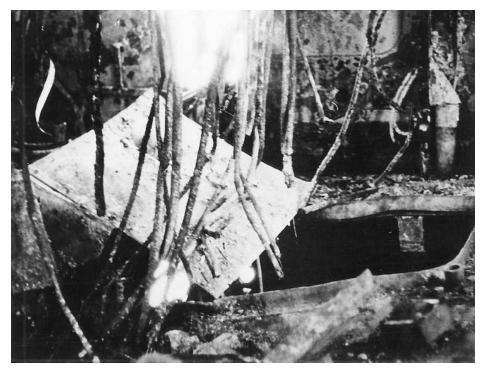

- Provide sufficient power to all loads while providing sufficient rolling reserve
- LOAD DEPENDENT
 POWER MANAGEMENT
 MODEL
 - Base rolling reserve on the total amount of load and the current operating condition
- RESOURCE
 MANAGEMENT MODEL
 - Calculate Rolling Reserve based on negotiations between Resource Managers

Number of generators connected	Generator load	Available power (Power reserve)	Time delay to initiate the starting sequence
2	70 %	2 x 30% = 60 %	10 min.
3	75 %	3 x 25% = 75 %	10 min.
4	80 %	4 x 20 % = 80 %	10 min.
5	84 %	5 x 16 % = 80 %	10 min.

Number of generators connected	Generator load	Available power (Power reserve)	Time delay to initiate the starting sequence
2	85 %	2 x 15% = 30 %	10 sec
3	87 %	3 x 13% = 39 %	10 sec
4	89 %	4 x 11 % = 44 %	10 sec
5	91 %	5 x 9 % = 45 %	10 sec

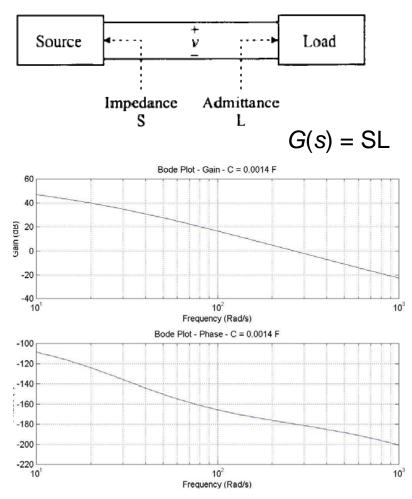
Number of generators connected	Generator load	Available power (Power reserve)	Time delay to initiate the starting sequence
2	105 %	0 %	Immediately
3	105 %	0 %	Immediately
4	105 %	0 %	Immediately
5	105 %	0 %	Immediately


Radan 2004


Power Management – Quality of Service

- Provide Power Continuity to the degree needed by the loads
 - Un-interruptible
 - Short term interruptible
 - Long term interruptible
- ROLLING RESERVE MODEL
 - Respond to a shortage in power generation capacity by shedding long-term interrupt loads.
 - Keep sufficient power generation capacity online to power uninterruptible and short-term interruptible loads on loss of the largest online generator.
 - Restore Long term interrupt loads are when sufficient power generation capacity is restored.
- ENERGY STORAGE MODEL
 - Use energy storage to power uninterruptible and short-term interruptible loads until sufficient power generation is restored to power all loads.

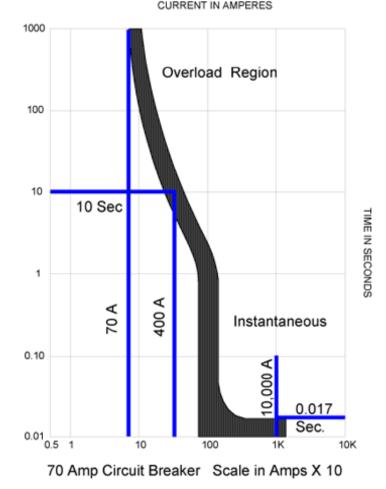
- Zonal Survivability is assumed. Issues become
 - Which power system components are safe to energize?
 - Which loads are safe to energize?
 - What is the priority ranking of loads to re-energize?
- OPERATOR-BASED RESPONSE
 MODEL
 - System reports the condition of power system equipment and loads.
 - Operator makes decisions.
- AGENT BASED RESPONSE MODEL
 - Resource Managers (computer agents) determine health of equipment and make decisions.



VAVEEA System Stability

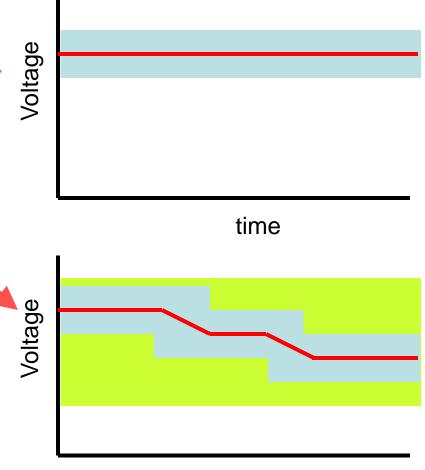
- Stability of DC Power Systems complicated by negative incremental resistance of constant power loads.
- LINEAR STABILITY METHODS
 - Generally based on Gain and Phase margins.
 - Measure of Small Signal Stability only.
 - Need to address all operating conditions to assess stability.

NONLINEAR STABILITY METHODS


- Accurately model the time-varying, nonlinear power system including initial conditions, system parameters and inputs.
- Determine equilibrium points.
- Determine perturbations about each equilibrium.
- For each perturbation about each equilibrium, determine the dynamic response of the system and whether it is acceptable

(Flower and Hodge 2005)

- Fault Response Actions
 - Identifies that a fault has occurred
 - Reconfigures the power system
 - Protects equipment and cables
- CIRCUIT BREAKER MODEL
 - Fault currents coordinate the tripping of breakers.
 - Affordability Concerns
 - DC Breakers
 - Power electronics sized to provide sufficient fault current
- POWER ELECTRONICS MODEL
 - Sensors and controls detect and localize faults.
 - Use QOS to enable taking bus down to isolate fault with zero-current switches.
 - Provide un-interruptible loads with alternate power source.
 - Requires an architecture and a design methodology.


(Phillips 2006)

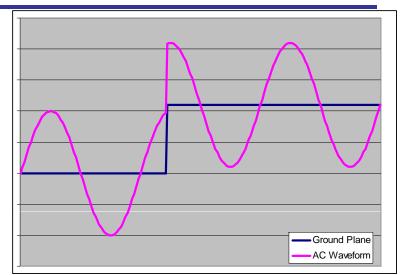
Approved for Public Release CAPT Doerry - Dr. Amy

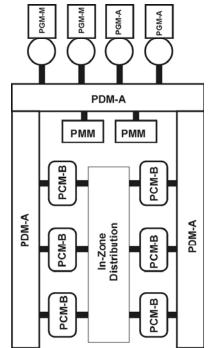
April 2008

- MVDC bus has a limited diversity of sources and loads.
 - Ideal voltage range and degree of regulation is not obvious.
- TIGHT TOLERANCE MODEL
 - Voltages regulated within a relatively narrow band to a set nominal voltage.
 - Simplifies interface design
- LOOSE TOLERANCE MODEL
 - PCON sets nominal voltage over a wide range.
 - Regulate voltage within a band around the nominal voltage.
 - Optimize system efficiency.
 - Increase complexity of sources and loads.
 - Increase cable size to enable operation at the lower voltage limit.

time

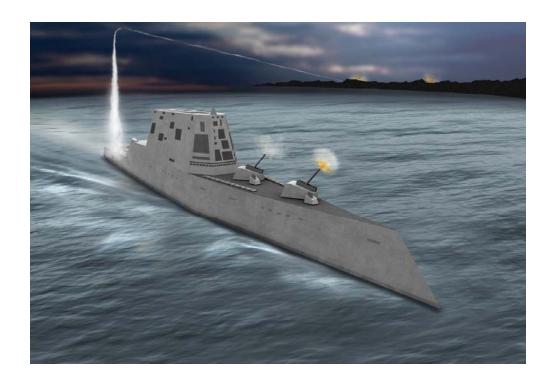
April 2008


- Electrically isolate equipment in a safe and verifiable manner to support Maintenance.
- PHYSICAL DISCONNECT MODEL
 - Isolate equipment with switches, circuit breakers, removable links, removable fuses, etc.
 - Use of Danger Tags
- CONTROL SYSTEM, POWER ELECTRONICS DISCONNECT MODEL
 - Use power electronics to electrically isolate loads
 - Isolate gate drive circuits?
 - Automate "Danger Tags" through control system and component design.
 - Trades cost of hardware with complexity and cost of control system.



- Should PCM-B provide galvanic isolation between the MVDC Bus • (PDM-A) and the In-Zone Distribution?
- PCM-B WITH GALVANIC • **ISOLATION**
 - Prevents DC Offsets from ground faults on MVDC bus from propagating into the In-Zone Distribution
 - Weight of isolation transformers can be reduced by using high-frequency transformers.
- PCM-B WITHOUT GALVANIC ۲ **ISOLATION**
 - Potentially lighter, smaller, and cheaper.
 - May require fast removal of ground faults on the MVDC Bus to prevent insulation system failure in the In-Zone Distribution.

Approved for Public Release CAPT Doerry - Dr. Amy



14

April 2008

- NGIPS Technology Development Roadmap
- Notional MVDC Architecture
- Functional Requirements
 - Power Management Normal Conditions
 - Power Management Quality of Service
 - Power Management Survivability
 - System Stability
 - Fault Response
 - Power Quality
 - Maintenance Support
 - System Grounding

April 2008