Institutionalizing the Electric Warship

CAPT Norbert Doerry
NAVSEA 05DB
May 22-24, 2006
Vision

Organic Surveillance Drone
- High Altitude
- Beam Power to Aircraft
- Minimal Handling - No Refueling

Electromagnetic Gun
- More than 10 MJ on Target
- Megawatt Range

High Powered Sensor
- Combination Sensor and Weapon
- High Powered Microwave
- High Powered Laser

Integrated Power System
- Affordable Power for Weapons and Propulsion
- Power Dense, Fuel Efficient Propulsion
- Reduced Signatures
- Power Conversion Flexibility

All Electric Auxiliaries
- No Hydraulics
- No HP Gas Systems
- Reduced Sailor Workload

High Energy Laser
- Enhanced Self Defense
- Precision Engagement
- No Collateral Damage
- Megawatt Class Laser

NO ENERGETICS ABOARD SHIP!

May 22-24, 2006
CAPT Norbert Doerry
Baseline - Programmed Today

LHD 8
Hybrid Electric Drive

CVN 78
High Voltage, High Power Distribution System
Electric Aircraft Launch

DD(X)
Military Integrated Power System

T-AKE
Commercial Integrated Power System

VIRGINIA
Power Electronics

May 22-24, 2006
CAPT Norbert Doerry
Institutionalizing Technology

- Early Technology Demonstration
- Incorporation into Production Units
- Standardization of Architecture and Interfaces
- Standardization of Design Process
- Integration into Design Tools
- Full Implementation in Standards and Specifications
- Part of Engineering School Curriculum

May 22-24, 2006
CAPT Norbert Doerry
Institutionalizing The Electric Warship

- Early Technology Demonstration
- Incorporation into Production Units
- Historic Focus of Electric Warship Efforts
 - Standardization of Architecture and Interfaces
 - Standardization of Design Process
 - Integration into Design Tools
 - Full Implementation in Standards and Specifications
 - Part of Engineering School Curriculum

May 22-24, 2006
CAPT Norbert Doerry
IPS Architectural Components

- Power Generation Module (PGM)
- Power Conversion Module (PCM)
- Power Distribution Module (PDM)
- Propulsion Motor Module (PMM)
- Power Load Module (PLM)
- Energy Storage Module (ESM)
- Power Control Module (PCM)
Zonal Distribution

Based on Zonal Survivability

- Zonal Survivability assumes:
 - Damage will impact only one or possibly two adjacent zones
 - Zones must be large enough to preclude damaging more zones
 - For systems with unsegmented “mains”, damage will not impact at least one longitudinal “main”
 - Requires separation and possibly protection of “mains”

- Zonal Survivability requires:
 - All loads (or Vital loads) in undamaged zones do not experience a “service interruption”

- Additional Design Goals include
 - Minimize “service interruption” to non-vital loads in undamaged zones
 - Minimize “service interruption” to vital loads in damaged zones
So What’s the Problem?

- Zonal Survivability isn’t defined in any authoritative document
- A “service interruption” isn’t defined anywhere either
 - Is it 30 minutes? (Local Control response)
 - Is it 2 minutes? (MIL-STD-1399 hints at this)
 - Is it 2 seconds? (switchgear clearing time)
 - Is it 100 milliseconds? (studies on hold up time)
 - Is it anything greater than 0?
- Don’t have a good way of verifying that the detail design of Cable Routing results in a survivable design.

May 22-24, 2006
CAPT Norbert Doerry
Other Electric Warship
Architectural Issues

- Machinery Control System Standards
 - An open software architecture does not exist

- Power Quality Standards Incomplete
 - DC standards aren’t codified
 - “Dirty” bus

- Quality of Service
 - Is the Electric Plant reliable as seen from the loads?

- System Stability
 - Issue largely due to constant power loads
 - No codified system for allocating “stability” for power system elements

- Grounding
 - Historic ungrounded systems on naval ships not aligned with industry practice and less appropriate for growing power systems.
Design Process Issues

- Definition of “Requirements” Terms outdated
 - Sustained Speed
 - Endurance Speed
- Load analysis more critical, but not standardized
 - Power quality (dirty / clean bus)
 - Zonal balancing of loads
 - Margin policy
- Power Distribution Equipment Sizing
 - Load Factors vs Zonal Load Factors vs Demand Factors
 - Inrush currents
- Power Generation Planning
 - Dark Ship Start
 - Preventing cascading failures
 - Transient stability of paralleled large and small PGMs
 - Margin policy
 - Impact of harmonic currents
- System Protection
 - Coordination of breakers
 - Allocation of system protection functions to PGM, PCON, PDM, PMM, PLM, etc.
 - Energy Storage Module requirements derivation

Design Process and associated Design Certification Process not Institutionalized
Design Tools

- Total Ship Integration (Concepts)
 - ASSET
 - LEAPS

- Power System Simulations
 - Currently every program does their own thing
 - Navy (including ONR) has invested in basic technology
 - Virtual Testbed
 - Stability Toolbox
 - Distributed Heterogeneous Simulation
 - Commercial Packages: Saber, ACSL, ...
 - Analytical requirements not established

Electric Warship Design Tools are not Institutionalized
Standards & Specifications

- Naval Vessel Rules
 - Includes provisions for IPS
 - Part 3 Chapter 5 Section 4
 - Doesn’t currently address all issues

- DOD-STD-1399
 - Being updated to address interface issues
 - Update is in progress

 - Under development to be consistent with NVR
 - Update is in progress
Engineering School Curriculum

- Designing IPS ships is part of the concept level design of several Post Graduate programs
 - Treats IPS components at the module level
 - Does not address all aspects of IPS integration

- The development of IPS component technology is an integral part of University research programs

- The design of IPS systems is not addressed in depth.
 - Reflects lack of maturity of IPS design processes
 - Systems Engineering typically taught at a higher conceptual level

- Basics of IPS system design taught as part of the Summer Naval Surface Ship Design Program
 - Summer Professional Development Program taught at the University of Michigan
 - Partnership of University of Michigan, NAVSEA, Virginia Tech, and Naval Postgraduate School
Summary

- Early Technology
 - Demonstration
 - Incorporation into
 - Production Units

- Work has started
 - We are early in the process

- Standardization of
 - Architecture and Interfaces

- Standardization of
 - Design Process

- Integration into
 - Design Tools

- Full Implementation
 - in Standards and Specifications

- Part of Engineering
 - School Curriculum

May 22-24, 2006
CAPT Norbert Doerry
Conclusions

- Electric Warship is here
 - Technology Demonstrations complete or underway
 - “Early Adopter” ships complete or in design

- Institutionalizing the Electric Warship has just begun
 - Many issues require resolution
 - NVR and other documents under development should help resolve the issues
 - Need investment in tools and education

- Stay Tuned
 - A lot is happening